iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/17407492
Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;12(1):6-16.
doi: 10.1111/j.1369-1600.2006.00041.x.

Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens

Affiliations

Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens

Elisabet Jerlhag et al. Addict Biol. 2007 Mar.

Abstract

Ghrelin stimulates appetite, increases food intake and causes adiposity by mechanisms that include direct actions on the brain. Previously, we showed that intracerebroventricular administration of ghrelin has stimulatory and dopamine-enhancing properties. These effects of ghrelin are mediated via central nicotine receptors, suggesting that ghrelin can activate the acetylcholine-dopamine reward link. This reward link consists of cholinergic input from the laterodorsal tegmental area (LDTg) to the mesolimbic dopamine system that originates in the ventral tegmental area (VTA) and projects to the nucleus accumbens. Given that growth hormone secretagogue receptors (GHSR-1A) are expressed in the VTA and LDTg, brain areas involved in reward, the present series of experiments were undertaken to examine the hypothesis that these regions may mediate the stimulatory and dopamine-enhancing effects of ghrelin, by means of locomotor activity and in vivo microdialysis in freely moving mice. We found that local administration of ghrelin into the VTA (1 microg in 1 microl) induced an increase in locomotor activity and in the extracellular concentration of accumbal dopamine. In addition, local administration of ghrelin into the LDTg (1 microg in 1 microl) caused a locomotor stimulation and an increase in the extracellular levels of accumbal dopamine. Taken together, this indicates that ghrelin might, via activation of GHSR-1A in the VTA and LDTg, stimulate the acetylcholine-dopamine reward link, implicating that ghrelin is a part of the neurochemical overlap between the reward systems and those that regulate energy balance.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources