iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/16276555
Reactions in micellar systems - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov 11;44(44):7174-99.
doi: 10.1002/anie.200501365.

Reactions in micellar systems

Affiliations

Reactions in micellar systems

Torsten Dwars et al. Angew Chem Int Ed Engl. .

Abstract

The notion of "green chemistry" has encouraged even synthetic organic chemists to include water as a solvent. Incredible selectivities and activities can be achieved through the addition of amphiphiles with a defined structure. The morphology of supramolecular assemblies or associates formed by surfactants vary according to the temperature and concentration. As a rule, reactions are typically conducted using simple spherical aggregates, that is, micelles in the nanometer range. The strong polarity gradient present between the hydrophilic surface and the hydrophobic core of the micelle means that both nonpolar and polar reagents can be solubilized. This solubilization results in reactants becoming more concentrated within the micelle than in the surrounding water phase and leads to an acceleration of the reaction and causes selective effects. The kinetic treatment of reactions in micellar systems can be accomplished by considering them as microheterogeneous two-phase systems.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources