iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/16267553/
Proteorhodopsin in the ubiquitous marine bacterium SAR11 - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov 3;438(7064):82-5.
doi: 10.1038/nature04032.

Proteorhodopsin in the ubiquitous marine bacterium SAR11

Affiliations

Proteorhodopsin in the ubiquitous marine bacterium SAR11

Stephen J Giovannoni et al. Nature. .

Abstract

Proteorhodopsins are light-dependent proton pumps that are predicted to have an important role in the ecology of the oceans by supplying energy for microbial metabolism. Proteorhodopsin genes were first discovered through the cloning and sequencing of large genomic DNA fragments from seawater. They were later shown to be widely distributed, phylogenetically diverse, and active in the oceans. Proteorhodopsin genes have not been found in cultured bacteria, and on the basis of environmental sequence data, it has not yet been possible to reconstruct the genomes of uncultured bacterial strains that have proteorhodopsin genes. Although the metabolic effect of proteorhodopsins is uncertain, they are thought to function in cells for which the primary mode of metabolism is the heterotrophic assimilation of dissolved organic carbon. Here we report that SAR11 strain HTCC1062 ('Pelagibacter ubique'), the first cultivated member of the extraordinarily abundant SAR11 clade, expresses a proteorhodopsin gene when cultured in autoclaved seawater and in its natural environment, the ocean. The Pelagibacter proteorhodopsin functions as a light-dependent proton pump. The gene is expressed by cells grown in either diurnal light or in darkness, and there is no difference between the growth rates or cell yields of cultures grown in light or darkness.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources