iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/16230382
Regulation of Kruppel-like factor 6 tumor suppressor activity by acetylation - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct 15;65(20):9216-25.
doi: 10.1158/0008-5472.CAN-05-1040.

Regulation of Kruppel-like factor 6 tumor suppressor activity by acetylation

Affiliations

Regulation of Kruppel-like factor 6 tumor suppressor activity by acetylation

Dan Li et al. Cancer Res. .

Abstract

Krüppel-like factor 6 (KLF6) is a zinc finger transcription factor and tumor suppressor that is inactivated in a number of human cancers by mutation, allelic loss, and/or promoter methylation. A key mechanism of growth inhibition by wild-type KLF6 is through p53-independent up-regulation of p21(WAF1/cip1) (CDKN1A), which is abrogated in several tumor-derived mutants. Here we show by chromatin immunoprecipitation that transactivation of p21(WAF1/cip1) by KLF6 occurs through its direct recruitment to the p21(WAF1/cip1) promoter and requires acetylation by histone acetyltransferase activity of either cyclic AMP-responsive element binding protein-binding protein or p300/CBP-associated factor. Direct lysine acetylation of KLF6 peptides can be shown by mass spectrometry. A single lysine-to-arginine point mutation (K209R) derived from prostate cancer reduces acetylation of KLF6 and abrogates its capacity to up-regulate endogenous p21(WAF1/cip1) and reduce cell proliferation. These data indicate that acetylation may regulate KLF6 function, and its loss in some tumor-derived mutants could contribute to its failure to suppress growth in prostate cancer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources