iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/15972226/
Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb;62(5):803-9.
doi: 10.1016/j.chemosphere.2005.04.055. Epub 2005 Jun 21.

Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L

Affiliations

Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L

Wen-Xue Li et al. Chemosphere. 2006 Feb.

Abstract

This study investigated the impacts of arsenic (As) on the chloroplast ultrastructure and calcium (Ca) distribution in Chinese brake (Pteris vittata L.) mainly by histochemical methods, with an emphasis on the possible function of Ca in As detoxification and accumulation in P. vittata. P. vittata was grown in an artificially contaminated soil added with different concentrations of Na(2)HAsO(4) (0, 100, 300 and 800 mg kg(-1) As dry soil) for 24 weeks in a greenhouse. The addition of As did not affect the chloroplast ultrastructure of young pinna, meanwhile most of the membrane systems of chloroplasts in mature pinna were severely damaged under high As condition. Calcium concentration in the fronds of P. vittata was not significantly affected by the addition of As, but Ca concentration in the mature pinna significantly increased by As addition, consistent with the position appearing As toxicity. When no As was added, most of calcium precipitates distributed around the inner membrane of vacuole. But when the pinna appeared plasmolysis, more calcium precipitates resided outside the cell membrane and bigger particles evenly distributed in the cytoplasm. All the results indicated that Ca had a close relation with As toxicity in P. vittata.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources