iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/15904876
Leptin inhibits apolipoprotein M transcription and secretion in human hepatoma cell line, HepG2 cells - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May 15;1734(2):198-202.
doi: 10.1016/j.bbalip.2005.02.005. Epub 2005 Mar 11.

Leptin inhibits apolipoprotein M transcription and secretion in human hepatoma cell line, HepG2 cells

Affiliations
Free article

Leptin inhibits apolipoprotein M transcription and secretion in human hepatoma cell line, HepG2 cells

Guanghua Luo et al. Biochim Biophys Acta. .
Free article

Abstract

Apolipoprotein M (apoM) is a novel apolipoprotein presented mostly in high-density lipoprotein (HDL) in human plasma. Previously we have reported that both leptin and leptin receptor are essential for apoM expression in vivo. The expression of apoM is lower in the leptin deficient (ob/ob) mouse and leptin receptor deficient (db/db) mouse than in the normal mouse. In the present study, however, we demonstrated that supra-physiological concentrations of recombinant leptin significantly inhibited apoM transcription and secretion in the human hepatoma cell line, HepG2 cells. Both Northern blotting and real-time RT-PCR were applied into the analyses of apoM mRNA levels, and compatible data were obtained. The inhibitory effect of leptin on apoM mRNA levels in HepG2 cells is dose dependent, i.e. 100 ng/mL of leptin decreased apoM mRNA levels by 30%, and 500 ng/mL of leptin decreased apoM mRNA levels about 50%. Even at a physiological concentration of leptin (10 ng/mL), apoM expression was decreased, and in parallel, the secretion of apoM into the medium was also decreased. Furthermore, we examined apoAI, apoB and apoE by Northern blotting analyses. The results demonstrated that leptin does not significantly influence the expressions of apoAI, apoB and apoE in HepC2 cells, suggesting that leptin has a specific regulatory effect on hepatic apoM transcription and secretion in vitro. The mechanism on the contradictory effects of leptin on apoM expression in vivo and in vitro needs further investigation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources