iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/11913381
Computational alanine scanning of the 1:1 human growth hormone-receptor complex - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan 15;23(1):15-27.
doi: 10.1002/jcc.1153.

Computational alanine scanning of the 1:1 human growth hormone-receptor complex

Affiliations

Computational alanine scanning of the 1:1 human growth hormone-receptor complex

Shuanghong Huo et al. J Comput Chem. .

Abstract

The MM-PBSA (Molecular Mechanics-Poisson-Boltzmann surface area) method was applied to the human Growth Hormone (hGH) complexed with its receptor to assess both the validity and the limitations of the computational alanine scanning approach. A 400-ps dynamical trajectory of the fully solvated complex was simulated at 300 K in a 101 A x 81 A x 107 A water box using periodic boundary conditions. Long-range electrostatic interactions were treated with the particle mesh Ewald (PME) summation method. Equally spaced snapshots along the trajectory were chosen to compute the binding free energy using a continuum solvation model to calculate the electrostatic desolvation free energy and a solvent-accessible surface area approach to treat the nonpolar solvation free energy. Computational alanine scanning was performed on the same set of snapshots by mutating the residues in the structural epitope of the hormone and the receptor to alanine and recomputing the deltaGbinding. To further investigate a particular structure, a 200-ps dynamical trajectory of an R43A hormone-receptor complex was simulated. By postprocessing a single trajectory of the wild-type complex, the average unsigned error of our calculated deltadeltaGbinding is approximately1 kcal/mol for the alanine mutations of hydrophobic residues and polar/charged residues without buried salt bridges. When residues involved in buried salt bridges are mutated to alanine, it is demonstrated that a separate trajectory of the alanine mutant complex can lead to reasonable agreement with experimental results. Our approach can be extended to rapid screening of a variety of possible modifications to binding sites.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources