iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/11746230
AMP-activated protein kinase: the energy charge hypothesis revisited - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Dec;23(12):1112-9.
doi: 10.1002/bies.10009.

AMP-activated protein kinase: the energy charge hypothesis revisited

Affiliations
Review

AMP-activated protein kinase: the energy charge hypothesis revisited

D G Hardie et al. Bioessays. 2001 Dec.

Abstract

The AMP-activated protein kinase cascade is a sensor of cellular energy charge, and its existence provides strong support for the energy charge hypothesis first proposed by Daniel Atkinson in the 1960s. The system is activated in an ultrasensitive manner by cellular stresses that deplete ATP (and consequently elevate AMP), either by inhibiting ATP production (e.g., hypoxia), or by accelerating ATP consumption (e.g., exercise in muscle). Once activated, it switches on catabolic pathways, both acutely by phosphorylation of metabolic enzymes and chronically by effects on gene expression, and switches off many ATP-consuming processes. Recent work suggests that activation of AMPK is responsible for many of the effects of physical exercise, both the rapid metabolic effects and the adaptations that occur during training. Dominant mutations in regulatory subunit isoforms (gamma2 and gamma3) of AMPK, which appear to increase the basal activity in the absence of AMP, lead to hypertrophy of cardiac and skeletal muscle respectively.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources