iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/11579433
Advances in the genetics of progressive myoclonus epilepsy - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Summer;106(2):129-38.
doi: 10.1002/ajmg.1575.

Advances in the genetics of progressive myoclonus epilepsy

Affiliations
Review

Advances in the genetics of progressive myoclonus epilepsy

A V Delgado-Escueta et al. Am J Med Genet. 2001 Summer.

Abstract

The genetic progressive myoclonus epilepsies (PMEs) are clinically characterized by the triad of stimulus sensitive myoclonus (segmental lightning like muscular jerks), epilepsy (grand mal and absences) and progressive neurologic deterioration (dementia, ataxia, and various neurologic signs depending on the cause). Etiologically heterogenous, PMEs are rare and mostly autosomal recessive disorders, with the exception of autosomal dominant dentatorubral-pallidoluysian atrophy and mitochondrial encephalomyopathy with ragged red fibers (MERRF). In the last five years, specific mutations have been defined in Lafora disease (gene for laforin or dual specificity phosphatase in 6q24), Unverricht-Lundborg disease (cystatin B in 21q22.3), Jansky-Bielschowsky ceroid lipofuscinoses (CLN2 gene for tripeptidyl peptidase 1 in 11q15), Finnish variant of late infantile ceroid lipofuscinoses (CLN5 gene in 13q21-32 encodes 407 amino acids with two transmembrane helices of unknown function), juvenile ceroid lipofuscinoses or Batten disease (CLN3 gene in 16p encodes 438 amino acid protein of unknown function), a subtype of Batten disease and infantile ceroid lipofuscinoses of the Haltia-Santavuori type (both are caused by mutations in palmitoyl-protein thiosterase gene at 1p32), dentadorubropallidoluysian atrophy (CAG repeats in a gene in 12p13.31) and the mitochondrial syndrome MERRF (tRNA Lys mutation in mitochondrial DNA). In this review, we cover mainly these rapid advances.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources