A global geometric framework for nonlinear dimensionality reduction
- PMID: 11125149
- DOI: 10.1126/science.290.5500.2319
A global geometric framework for nonlinear dimensionality reduction
Abstract
Scientists working with large volumes of high-dimensional data, such as global climate patterns, stellar spectra, or human gene distributions, regularly confront the problem of dimensionality reduction: finding meaningful low-dimensional structures hidden in their high-dimensional observations. The human brain confronts the same problem in everyday perception, extracting from its high-dimensional sensory inputs-30,000 auditory nerve fibers or 10(6) optic nerve fibers-a manageably small number of perceptually relevant features. Here we describe an approach to solving dimensionality reduction problems that uses easily measured local metric information to learn the underlying global geometry of a data set. Unlike classical techniques such as principal component analysis (PCA) and multidimensional scaling (MDS), our approach is capable of discovering the nonlinear degrees of freedom that underlie complex natural observations, such as human handwriting or images of a face under different viewing conditions. In contrast to previous algorithms for nonlinear dimensionality reduction, ours efficiently computes a globally optimal solution, and, for an important class of data manifolds, is guaranteed to converge asymptotically to the true structure.
Comment in
- Science 2002 Jan 4;295(5552):2319-23
-
Cognition. The manifold ways of perception.Science. 2000 Dec 22;290(5500):2268-9. doi: 10.1126/science.290.5500.2268. Science. 2000. PMID: 11188725
Similar articles
-
Nonlinear dimensionality reduction by locally linear embedding.Science. 2000 Dec 22;290(5500):2323-6. doi: 10.1126/science.290.5500.2323. Science. 2000. PMID: 11125150
-
Large margin low rank tensor analysis.Neural Comput. 2014 Apr;26(4):761-80. doi: 10.1162/NECO_a_00570. Epub 2014 Jan 30. Neural Comput. 2014. PMID: 24479778
-
Nonlinear Dimensionality Reduction by Minimum Curvilinearity for Unsupervised Discovery of Patterns in Multidimensional Proteomic Data.Methods Mol Biol. 2016;1384:289-98. doi: 10.1007/978-1-4939-3255-9_16. Methods Mol Biol. 2016. PMID: 26611421
-
The unreasonable effectiveness of small neural ensembles in high-dimensional brain.Phys Life Rev. 2019 Jul;29:55-88. doi: 10.1016/j.plrev.2018.09.005. Epub 2018 Oct 2. Phys Life Rev. 2019. PMID: 30366739 Review.
-
Performance of a Computational Model of the Mammalian Olfactory System.In: Persaud KC, Marco S, Gutiérrez-Gálvez A, editors. Neuromorphic Olfaction. Boca Raton (FL): CRC Press/Taylor & Francis; 2013. Chapter 6. In: Persaud KC, Marco S, Gutiérrez-Gálvez A, editors. Neuromorphic Olfaction. Boca Raton (FL): CRC Press/Taylor & Francis; 2013. Chapter 6. PMID: 26042330 Free Books & Documents. Review.
Cited by
-
Opportunities and challenges of diffusion models for generative AI.Natl Sci Rev. 2024 Oct 3;11(12):nwae348. doi: 10.1093/nsr/nwae348. eCollection 2024 Dec. Natl Sci Rev. 2024. PMID: 39554240 Free PMC article. Review.
-
A tied-weight autoencoder for the linear dimensionality reduction of sample data.Sci Rep. 2024 Nov 5;14(1):26801. doi: 10.1038/s41598-024-77080-8. Sci Rep. 2024. PMID: 39501008 Free PMC article.
-
Graphlet-based hyperbolic embeddings capture evolutionary dynamics in genetic networks.Bioinformatics. 2024 Nov 1;40(11):btae650. doi: 10.1093/bioinformatics/btae650. Bioinformatics. 2024. PMID: 39495120 Free PMC article.
-
Rastermap: a discovery method for neural population recordings.Nat Neurosci. 2024 Oct 16. doi: 10.1038/s41593-024-01783-4. Online ahead of print. Nat Neurosci. 2024. PMID: 39414974
-
Prognostic model for predicting Alzheimer's disease conversion using functional connectome manifolds.Alzheimers Res Ther. 2024 Oct 9;16(1):217. doi: 10.1186/s13195-024-01589-3. Alzheimers Res Ther. 2024. PMID: 39385241 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous