iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/11069105
Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Oct 19;10(20):1247-55.
doi: 10.1016/s0960-9822(00)00742-9.

Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia

Affiliations
Free article

Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia

A S Marsin et al. Curr Biol. .
Free article

Abstract

Background: The role of protein phosphorylation in the Pasteur effect--the phenomenon whereby anaerobic conditions stimulate glycolysis--has not been addressed. The AMP-activated protein kinase (AMPK) is activated when the oxygen supply is restricted. AMPK acts as an energy-state sensor and inhibits key biosynthetic pathways, thus conserving ATP. Here, we studied whether AMPK is involved in the Pasteur effect in the heart by phosphorylating and activating 6-phosphofructo-2-kinase (PFK-2), the enzyme responsible for the synthesis of fructose 2,6-bisphosphate, a potent stimulator of glycolysis.

Results: Heart PFK-2 was phosphorylated on Ser466 and activated by AMPK in vitro. In perfused rat hearts, anaerobic conditions or inhibitors of oxidative phosphorylation (oligomycin and antimycin) induced AMPK activation, which correlated with PFK-2 activation and with an increase in fructose 2,6-bisphosphate concentration. Moreover, in cultured cells transfected with heart PFK-2, oligomycin treatment resulted in a parallel activation of endogenous AMPK and PFK-2. In these cells, the activation of PFK-2 was due to the phosphorylation of Ser466. A dominant-negative construct of AMPK abolished the activation of endogenous and cotransfected AMPK, and prevented both the activation and phosphorylation of transfected PFK-2 by oligomycin.

Conclusions: AMPK phosphorylates and activates heart PFK-2 in vitro and in intact cells. AMPK-mediated PFK-2 activation is likely to be involved in the stimulation of heart glycolysis during ischaemia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources