Analysis of cannabinoid receptor binding and mRNA expression and endogenous cannabinoid contents in the developing rat brain during late gestation and early postnatal period
- PMID: 10420166
- DOI: 10.1002/(SICI)1098-2396(19990901)33:3<181::AID-SYN3>3.0.CO;2-R
Analysis of cannabinoid receptor binding and mRNA expression and endogenous cannabinoid contents in the developing rat brain during late gestation and early postnatal period
Abstract
Cannabinoid CB(1) receptors emerge early in the rat brain during prenatal development, supporting their potential participation in events related to neural development. In the present investigation, we completed earlier studies, analyzing CB(1) receptor binding and mRNA expression by using autoradiography and in situ hybridization, respectively, in the brain of rat fetuses at gestational day (GD) 21 and of newborns at postnatal days (PND) 1 and 5, in comparison with the adult brain. These analyses were paralleled by quantitation of levels of anandamide and its precursor, N-arachidonoyl-phosphatidylethanolamine (NAPE), and of 2-arachidonoyl-glycerol (2-AG), carried out by using gas chromatography / mass spectrometry of the tri-methyl-sylyl-ether derivatives. As expected, CB(1) receptor binding was detected at GD21 in a variety of brain structures. In most of them, such as the hippocampus, cerebral cortex, cerebellum, basal ganglia, and limbic nuclei, there were no marked differences in the density of CB(1) receptors in animals at GD21 as compared to early newborns (PND1 and 5), although it markedly increased in these regions in adulthood. However, with the exception of the cerebellum and, in part, the caudate-putamen, the pattern observed for binding in these regions was clearly different from that observed for mRNA expression of the CB(1) receptor, which currently exhibited the highest levels at PND1 and the lowest in the adult brain. This was also seen in the basolateral amygdaloid nucleus, ventromedial hypothalamic nucleus, medial habenula, and other structures. In the caudate-putamen and, particularly, in the cerebellum, mRNA expression was higher in the adult brain as compared with other ages. As previously reported, specific binding for CB(1) receptors was also detected at GD21 in white matter areas, such as the corpus callosum, anterior commissure, fornix, fimbria, stria medullaris, stria terminalis, and fasciculus retroflexum. With the exception of the anterior commissure and the fimbria, specific binding progressively decreased at PND1 and PND5 until disappearing in the adult brain. In the fimbria, the highest values of binding were seen at PND1, but binding also completely disappeared in the adult brain, whereas in the anterior commissure, specific binding at PND1 and PND5 was lesser than that observed at GD21 and, particularly, in adulthood. CB(1) receptor mRNA expression was not detected in these white matter areas, thus dismissing the possible presence of these receptors in glial cells rather than in neuronal axons. However, mRNA expression was detected in the brainstem, an area also rich in white matter, and it mostly correlated with receptor binding, exhibiting a progressive decrease from GD21 up to adulthood. CB(1) receptor mRNA expression was also detected at GD21 in atypical areas where binding was not detected. These areas are proliferative regions, such as the subventricular zones of the neocortex, striatum, and nucleus accumbens. This atypical location only persisted at PND1 and PND5 in the striatal subventricular zone, but disappeared in the adult brain. We also found measurable levels of different endogenous cannabinoids in the developing brain. High levels of 2-AG, comparable to those found in the adult brain, were measured at GD21, whereas significantly lower levels were measured for anandamide and NAPE at this fetal age compared with the levels found in the adult brain. Levels of anandamide and NAPE increased during the early postnatal period until reaching the maximum in the adult brain. By contrast, 2-AG levels peaked at PND1, with values approximately twofold higher than those found at the other ages. In summary, all these data demonstrate that the endogenous cannabinoid system, constituted by endogenous ligands and receptor signaling pathways, is present in the developing brain, which suggests a possible specific role of this system in key processes of neural development. (c) 1999 Wiley-Liss, Inc.
Similar articles
-
The activation of cannabinoid receptors during early postnatal development reduces the expression of cell adhesion molecule L1 in the rat brain.Brain Res. 2007 May 11;1145:48-55. doi: 10.1016/j.brainres.2007.01.102. Epub 2007 Feb 1. Brain Res. 2007. PMID: 17320842
-
Atypical location of cannabinoid receptors in white matter areas during rat brain development.Synapse. 1997 Jul;26(3):317-23. doi: 10.1002/(SICI)1098-2396(199707)26:3<317::AID-SYN12>3.0.CO;2-S. Synapse. 1997. PMID: 9183820
-
Colocalization of CB1 receptors with L1 and GAP-43 in forebrain white matter regions during fetal rat brain development: evidence for a role of these receptors in axonal growth and guidance.Neuroscience. 2008 May 15;153(3):687-99. doi: 10.1016/j.neuroscience.2008.02.038. Epub 2008 Feb 29. Neuroscience. 2008. PMID: 18400407
-
The endocannabinoid-CB(1) receptor system in pre- and postnatal life.Eur J Pharmacol. 2004 Oct 1;500(1-3):289-97. doi: 10.1016/j.ejphar.2004.07.033. Eur J Pharmacol. 2004. PMID: 15464041 Review.
-
Calcium-binding proteins in the human developing brain.Adv Anat Embryol Cell Biol. 2002;165:III-IX, 1-92. Adv Anat Embryol Cell Biol. 2002. PMID: 12236093 Review.
Cited by
-
The human milk endocannabinoidome and neonatal growth in gestational diabetes.Front Endocrinol (Lausanne). 2024 Jun 13;15:1415630. doi: 10.3389/fendo.2024.1415630. eCollection 2024. Front Endocrinol (Lausanne). 2024. PMID: 38938519 Free PMC article.
-
Endocannabinoid System Changes throughout Life: Implications and Therapeutic Potential for Autism, ADHD, and Alzheimer's Disease.Brain Sci. 2024 Jun 10;14(6):592. doi: 10.3390/brainsci14060592. Brain Sci. 2024. PMID: 38928592 Free PMC article. Review.
-
Stability and inter-family associations of hair endocannabinoid and N-acylethanolamines across the perinatal period in mothers, fathers, and children.Sci Rep. 2024 Apr 24;14(1):9459. doi: 10.1038/s41598-024-59818-6. Sci Rep. 2024. PMID: 38658668 Free PMC article.
-
Longitudinal course of endocannabinoids and N-acylethanolamines in hair of mothers and their children in the first year postpartum: investigating the relevance of maternal childhood maltreatment experiences.Psychol Med. 2023 Nov;53(15):7446-7457. doi: 10.1017/S0033291723001204. Epub 2023 May 18. Psychol Med. 2023. PMID: 37198936 Free PMC article.
-
Role of integrating cannabinoids and the endocannabinoid system in neonatal hypoxic-ischaemic encephalopathy.Front Mol Neurosci. 2023 Apr 12;16:1152167. doi: 10.3389/fnmol.2023.1152167. eCollection 2023. Front Mol Neurosci. 2023. PMID: 37122621 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials