iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://pubmed.ncbi.nlm.nih.gov/10067936/
Thalamic stimulation and functional magnetic resonance imaging: localization of cortical and subcortical activation with implanted electrodes. Technical note - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Mar;90(3):583-90.
doi: 10.3171/jns.1999.90.3.0583.

Thalamic stimulation and functional magnetic resonance imaging: localization of cortical and subcortical activation with implanted electrodes. Technical note

Affiliations

Thalamic stimulation and functional magnetic resonance imaging: localization of cortical and subcortical activation with implanted electrodes. Technical note

A R Rezai et al. J Neurosurg. 1999 Mar.

Abstract

The utility of functional magnetic resonance (fMR) imaging in patients with implanted thalamic electrodes has not yet been determined. The aim of this study was to establish the safety of performing fMR imaging in patients with thalamic deep brain stimulators and to determine the value of fMR imaging in detecting cortical and subcortical activity during stimulation. Functional MR imaging was performed in three patients suffering from chronic pain and two patients with essential tremor. Two of the three patients with pain had undergone electrode implantation in the thalamic sensory ventralis caudalis (Vc) nucleus and the other had undergone electrode implantation in both the Vc and the periventricular gray (PVG) matter. Patients with tremor underwent electrode implantation in the ventralis intermedius (Vim) nucleus. Functional MR imaging was performed during stimulation by using a pulse generator connected to a transcutaneous extension lead. Clinically, Vc stimulation evoked paresthesias in the contralateral body, PVG stimulation evoked a sensation of diffuse internal body warmth, and Vim stimulation caused tremor arrest. Functional images were acquired using a 1.5-tesla MR imaging system. The Vc stimulation at intensities provoking paresthesias resulted in activation of the primary somatosensory cortex (SI). Stimulation at subthreshold intensities failed to activate the SI. Additional stimulation-coupled activation was observed in the thalamus, the secondary somatosensory cortex (SII), and the insula. In contrast, stimulation of the PVG electrode did not evoke paresthesias or activate the SI, but resulted in medial thalamic and cingulate cortex activation. Stimulation in the Vim resulted in thalamic, basal ganglia, and SI activation. An evaluation of the safety of the procedure indicated that significant current could be induced within the electrode if a faulty connecting cable (defective insulation) came in contact with the patient. Simple precautions, such as inspection of wires for fraying and prevention of their contact with the patient, enabled the procedure to be conducted safely. Clinical safety was further corroborated by performing 86 MR studies in patients in whom electrodes had been implanted with no adverse clinical effects. This is the first report of the use of fMR imaging during stimulation with implanted thalamic electrodes. The authors' findings demonstrate that fMR imaging can safely detect the activation of cortical and subcortical neuronal pathways during stimulation and that stimulation does not interfere with imaging. This approach offers great potential for understanding the mechanisms of action of deep brain stimulation and those underlying pain and tremor generation.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources