Symbols:P

From ProofWiki
Jump to navigation Jump to search

Previous  ... Next

pico-

$\mathrm p$

The Système Internationale d'Unités symbol for the metric scaling prefix pico, denoting $10^{\, -12 }$, is $\mathrm { p }$.


Its $\LaTeX$ code is \mathrm {p} .


peta-

$\mathrm P$

The Système Internationale d'Unités symbol for the metric scaling prefix peta, denoting $10^{\, 15 }$, is $\mathrm { P }$.


Its $\LaTeX$ code is \mathrm {P} .


Prime Number

$p$

Used to denote a general prime number.


The $\LaTeX$ code for \(p\) is p .


Probability

$p$

Used to denote a general probability.

As such, $p$ is a real number such that:

$0 \le p \le 1$


The $\LaTeX$ code for \(p\) is p .


Proposition

$p$ or $P$

Used to denote a general proposition in the context of propositional logic.


The $\LaTeX$ code for \(p\) is p .

The $\LaTeX$ code for \(P\) is P .


Permutation

${}_n P_r$, ${P_n}^r$, $p_{n r}$ or ${}^n P_r$


The number of $r$-permutations from a set of cardinality $n$ is denoted variously:

${}_n P_r$
${P_n}^r$
$p_{n r}$
${}^n P_r$

There is little consistency in the literature.

On $\mathsf{Pr} \infty \mathsf{fWiki}$ the notation of choice is ${}^n P_r$.


The $\LaTeX$ code for \({}_n P_r\) is {}_n P_r .

The $\LaTeX$ code for \({P_n}^r\) is {P_n}^r .

The $\LaTeX$ code for \(p_{n r}\) is p_{n r} .

The $\LaTeX$ code for \({}^n P_r\) is {}^n P_r .


Pressure

$p$ or $P$

The usual symbol used to denote the pressure on a body is $p$ or $P$.


The $\LaTeX$ code for \(p\) is p .

The $\LaTeX$ code for \(P\) is P .


Electric Polarization

$P$

The usual symbol used to denote electric polarization is $P$.


Its $\LaTeX$ code is P .


Polynomial Time Problem

$P$

Used to denote a general polynomial time problem.


The $\LaTeX$ code for \(P\) is P .


Power Set

$\powerset S$ is the power set of the set $S$.

It is defined as:

$\powerset S = \set {T: T \subseteq S}$


$\map {\mathfrak P} S$ is an alternative notation, but the fraktur font, of which $\mathfrak P$ is an example, is falling out of use, probably as a result of its difficulty in being both read and written.


The $\LaTeX$ code for \(\powerset S\) is \powerset S .

The $\LaTeX$ code for \(\map {\mathfrak P} S\) is \map {\mathfrak P} S .


Legendre Polynomial

$\map {P_n} x$


Consider the Legendre's differential equation:

$(1): \quad \paren {1 - x^2} \dfrac {\d^2 y} {\d x^2} - 2 x \dfrac {\d y} {\d x} + n \paren {n + 1} y = 0$

for $n \in \N$.

The solutions to $(1)$ are called the Legendre polynomials of order $n$ and denoted $\map {P_n} x$.


The $\LaTeX$ code for \(\map {P_n} x\) is \map {P_n} x .


Associated Legendre Function

$\map { {P_n}^m} x$


The associated Legendre functions are the real functions defined and denoted as:

$\map { {P_n}^m} x = \paren {1 - x^2}^{m / 2} \dfrac {\d^m} {\d x^m} \map {P_n} x$

where $\map {P_n} x$ is the Legendre polynomial of order $n$.


The $\LaTeX$ code for \(\map { {P_n}^m} x\) is \map { {P_n}^m} x .


Poisson Distribution

$X \sim \Poisson \lambda$

or

$X \sim \map {\mathrm {Pois} } \lambda$


$X$ has the Poisson distribution with parameter $\lambda$.


The $\LaTeX$ code for \(X \sim \Poisson \lambda\) is X \sim \Poisson \lambda .

The $\LaTeX$ code for \(X \sim \map {\mathrm {Pois} } \lambda\) is X \sim \map {\mathrm {Pois} } \lambda .


Probability Measure

$\Pr$

Let $\EE$ be an experiment.

Let $\EE$ be defined as a measure space $\struct {\Omega, \Sigma, \Pr}$.

Then $\Pr$ is a measure on $\EE$ such that $\map \Pr \Omega = 1$.


The $\LaTeX$ code for \(\Pr\) is \Pr .


Probability Mass Function

$\map {p_X} x$


Let $\struct {\Omega, \Sigma, \Pr}$ be a probability space.

Let $X: \Omega \to \R$ be a discrete random variable on $\struct {\Omega, \Sigma, \Pr}$.


Then the probability mass function of $X$ is the (real-valued) function $p_X: \R \to \closedint 0 1$ defined as:

$\quad \forall x \in \R: \map {p_X} x = \begin {cases} \map \Pr {\set {\omega \in \Omega: \map X \omega = x} } & : x \in \Omega_X \\ 0 & : x \notin \Omega_X \end {cases}$

where $\Omega_X$ is defined as $\Img X$, the image of $X$.

That is, $\map {p_X} x$ is the probability that the discrete random variable $X$ takes the value $x$.


The $\LaTeX$ code for \(\map {p_X} x\) is \map {p_X} x .


Power (Physics)

$P$ or $p$


The usual symbols used to denote power are $P$ or $p$.


The $\LaTeX$ code for \(P\) is P .

The $\LaTeX$ code for \(p\) is p .


Linear Momentum

$\mathbf p$


The linear momentum of a particle is its mass multiplied by its velocity.

$\mathbf p = m \mathbf v$


The usual symbol used to denote the linear momentum of a body is $\mathbf p$.


The $\LaTeX$ code for \(\mathbf p\) is \mathbf p .


Pascal

$\mathrm {Pa}$

The symbol for the pascal is $\mathrm {Pa}$.


Its $\LaTeX$ code is \mathrm {Pa} .


Pascal Second

$\mathrm {Pa \cdot s}$

The symbol for the pascal second is $\mathrm {Pa \cdot s}$.


Its $\LaTeX$ code is \mathrm {Pa \cdot s} .


Poundal

$\mathrm {pdl}$

The symbol for the poundal is $\mathrm {pdl}$.


The $\LaTeX$ code for \(\mathrm {pdl}\) is \mathrm {pdl} .


Pound per Square Inch: Variant

$\mathrm {psi}$ or $\mathrm {p.s.i.}$

The symbol for the pound per square inch can also be presented as $\mathrm {psi}$ or $\mathrm {p.s.i.}$


The $\LaTeX$ code for \(\mathrm {psi}\) is \mathrm {psi} .

The $\LaTeX$ code for \(\mathrm {p.s.i.}\) is \mathrm {p.s.i.} .


Poise

$\mathrm P$

The symbol for the poise is $\mathrm P$.


Its $\LaTeX$ code is \mathrm P .


Poiseuille

$\mathrm {Pl}$

The symbol for the poiseuille is $\mathrm {Pl}$.


Its $\LaTeX$ code is \mathrm {Pl} .


Standard Atmospheric Pressure

$P_0$


The symbol for the standard atmospheric pressure is $P_0$.


The $\LaTeX$ code for \(P_0\) is P_0 .


Parsec

$\mathrm {pc}$

The symbol for the parsec is $\mathrm {pc}$.


The $\LaTeX$ code for \(\mathrm {pc}\) is \mathrm {pc} .


Previous  ... Next