iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://periodic.lanl.gov/68.shtml
Periodic Table of Elements: Los Alamos National Laboratory
Los Alamos National Laboratory
Periodic Table of Elements: LANL

Back to Elements List

Erbium

Atomic Number: 68 Atomic Radius: 235 pm (Van der Waals)
Atomic Symbol: Er Melting Point: 1529 °C
Atomic Weight: 167.3 Boiling Point: 2868 °C
Electron Configuration: [Xe]6s24f12 Oxidation States: 3, 2, 1 ​(a basic oxide)

History

Erbium, one of the so-called rare-earth elements on the lanthanide series, is found in the minerals mentioned under dysprosium. In 1842 Mosander separated "yttria" found in the mineral gadolinite, into three fractions which he called yttria, erbia, and terbia. The names erbia and terbia became confused in this early period. After 1860, Mosander's terbia was known as erbia, and after 1877, the earlier known erbia became terbia. The erbia of this period was later shown to consist of five oxides, now known as erbia, scandia, holmia, thulia and ytterbia. By 1905 Urbain and James independently succeeded in isolating fairly pure Er2O3. Klemm and Bommer first produced reasonably pure erbium metal in 1934 by reducing the anhydrous chloride with potassium vapor.

Properties

The pure metal is soft and malleable and has a bright, silvery, metallic luster. As with other rare-earth metals, its properties depend to a certain extent on the impurities present. The metal is fairly stable in air and does not oxidize as rapidly as some of the other rare-earth metals. Naturally occurring erbium is a mixture of six isotopes, all of which are stable. Nine radioactive isotopes of erbium are also recognized. Recent production techniques, using ion-exchange reactions, have resulted in much lower prices of the rare-earth metals and their compounds in recent years. Most of the rare-earth oxides have sharp absorption bands in the visible, ultraviolet, and near infrared. This property, associated with the electronic structure, gives beautiful pastel colors to many of the rare-earth salts.

Uses

Erbium is finding nuclear and metallurgical uses. Added to vanadium, for example, erbium lowers the hardness and improves workability. Erbium oxide gives a pink color and has been used as a colorant in glasses and porcelain enamel glazes.

Contact Us | Careers | Bradbury Science Museum | Emergencies | Inside LANL | Maps | Site Feedback | SSL Portal | Training

Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA © Copyright 2021 Triad National Security, LLC All rights reserved | Terms of Use | Privacy Policy