Schroeder, Andreas (2011): Software engineering perspectives on physiological computing. Dissertation, LMU München: Fakultät für Mathematik, Informatik und Statistik |
Vorschau |
PDF
Schroeder_Andreas.pdf 5MB |
Abstract
Physiological computing is an interesting and promising concept to widen the communication channel between the (human) users and computers, thus allowing an increase of software systems' contextual awareness and rendering software systems smarter than they are today. Using physiological inputs in pervasive computing systems allows re-balancing the information asymmetry between the human user and the computer system: while pervasive computing systems are well able to flood the user with information and sensory input (such as sounds, lights, and visual animations), users only have a very narrow input channel to computing systems; most of the time, restricted to keyboards, mouse, touchscreens, accelerometers and GPS receivers (through smartphone usage, e.g.). Interestingly, this information asymmetry often forces the user to subdue to the quirks of the computing system to achieve his goals -- for example, users may have to provide information the software system demands through a narrow, time-consuming input mode that the system could sense implicitly from the human body. Physiological computing is a way to circumvent these limitations; however, systematic means for developing and moulding physiological computing applications into software are still unknown. This thesis proposes a methodological approach to the creation of physiological computing applications that makes use of component-based software engineering. Components help imposing a clear structure on software systems in general, and can thus be used for physiological computing systems as well. As an additional bonus, using components allow physiological computing systems to leverage reconfigurations as a means to control and adapt their own behaviours. This adaptation can be used to adjust the behaviour both to the human and to the available computing environment in terms of resources and available devices - an activity that is crucial for complex physiological computing systems. With the help of components and reconfigurations, it is possible to structure the functionality of physiological computing applications in a way that makes them manageable and extensible, thus allowing a stepwise and systematic extension of a system's intelligence. Using reconfigurations entails a larger issue, however. Understanding and fully capturing the behaviour of a system under reconfiguration is challenging, as the system may change its structure in ways that are difficult to fully predict. Therefore, this thesis also introduces a means for formal verification of reconfigurations based on assume-guarantee contracts. With the proposed assume-guarantee contract framework, it is possible to prove that a given system design (including component behaviours and reconfiguration specifications) is satisfying real-time properties expressed as assume-guarantee contracts using a variant of real-time linear temporal logic introduced in this thesis - metric interval temporal logic for reconfigurable systems. Finally, this thesis embeds both the practical approach to the realisation of physiological computing systems and formal verification of reconfigurations into Scrum, a modern and agile software development methodology. The surrounding methodological approach is intended to provide a frame for the systematic development of physiological computing systems from first psychological findings to a working software system with both satisfactory functionality and software quality aspects. By integrating practical and theoretical aspects of software engineering into a self-contained development methodology, this thesis proposes a roadmap and guidelines for the creation of new physiological computing applications.
Abstract
Physiologisches Rechnen ist ein interessantes und vielversprechendes Konzept zur Erweiterung des Kommunikationskanals zwischen (menschlichen) Nutzern und Rechnern, und dadurch die Berücksichtigung des Nutzerkontexts in Software-Systemen zu verbessern und damit Software-Systeme intelligenter zu gestalten, als sie es heute sind. Physiologische Eingangssignale in ubiquitären Rechensystemen zu verwenden, ermöglicht eine Neujustierung der Informationsasymmetrie, die heute zwischen Menschen und Rechensystemen existiert: Während ubiquitäre Rechensysteme sehr wohl in der Lage sind, den Menschen mit Informationen und sensorischen Reizen zu überfluten (z.B. durch Töne, Licht und visuelle Animationen), hat der Mensch nur sehr begrenzte Einflussmöglichkeiten zu Rechensystemen. Meistens stehen nur Tastaturen, die Maus, berührungsempfindliche Bildschirme, Beschleunigungsmesser und GPS-Empfänger (zum Beispiel durch Mobiltelefone oder digitale Assistenten) zur Verfügung. Diese Informationsasymmetrie zwingt die Benutzer zur Unterwerfung unter die Usancen der Rechensysteme, um ihre Ziele zu erreichen - zum Beispiel müssen Nutzer Daten manuell eingeben, die auch aus Sensordaten des menschlichen Körpers auf unauffällige weise erhoben werden können. Physiologisches Rechnen ist eine Möglichkeit, diese Beschränkung zu umgehen. Allerdings fehlt eine systematische Methodik für die Entwicklung physiologischer Rechensysteme bis zu fertiger Software. Diese Dissertation präsentiert einen methodischen Ansatz zur Entwicklung physiologischer Rechenanwendungen, der auf der komponentenbasierten Softwareentwicklung aufbaut. Der komponentenbasierte Ansatz hilft im Allgemeinen dabei, eine klare Architektur des Software-Systems zu definieren, und kann deshalb auch für physiologische Rechensysteme angewendet werden. Als zusätzlichen Vorteil erlaubt die Komponentenorientierung in physiologischen Rechensystemen, Rekonfigurationen als Mittel zur Kontrolle und Anpassung des Verhaltens von physiologischen Rechensystemen zu verwenden. Diese Adaptionstechnik kann genutzt werden um das Verhalten von physiologischen Rechensystemen an den Benutzer anzupassen, sowie an die verfügbare Recheninfrastruktur im Sinne von Systemressourcen und Geräten - eine Maßnahme, die in komplexen physiologischen Rechensystemen entscheidend ist. Mit Hilfe der Komponentenorientierung und von Rekonfigurationen wird es möglich, die Funktionalität von physiologischen Rechensystemen so zu strukturieren, dass das System wartbar und erweiterbar bleibt. Dadurch wird eine schrittweise und systematische Erweiterung der Funktionalität des Systems möglich. Die Verwendung von Rekonfigurationen birgt allerdings Probleme. Das Systemverhalten eines Software-Systems, das Rekonfigurationen unterworfen ist zu verstehen und vollständig einzufangen ist herausfordernd, da das System seine Struktur auf schwer vorhersehbare Weise verändern kann. Aus diesem Grund führt diese Arbeit eine Methode zur formalen Verifikation von Rekonfigurationen auf Grundlage von Annahme-Zusicherungs-Verträgen ein. Mit dem vorgeschlagenen Annahme-Zusicherungs-Vertragssystem ist es möglich zu beweisen, dass ein gegebener Systementwurf (mitsamt Komponentenverhalten und Spezifikation des Rekonfigurationsverhaltens) eine als Annahme-Zusicherungs-Vertrag spezifizierte Echtzeiteigenschaft erfüllt. Für die Spezifikation von Echtzeiteigenschaften kann eine Variante von linearer Temporallogik für Echtzeit verwendet werden, die in dieser Arbeit eingeführt wird: Die metrische Intervall-Temporallogik für rekonfigurierbare Systeme. Schließlich wird in dieser Arbeit sowohl ein praktischer Ansatz zur Realisierung von physiologischen Rechensystemen als auch die formale Verifikation von Rekonfigurationen in Scrum eingebettet, einer modernen und agilen Softwareentwicklungsmethodik. Der methodische Ansatz bietet einen Rahmen für die systematische Entwicklung physiologischer Rechensysteme von Erkenntnissen zur menschlichen Physiologie hin zu funktionierenden physiologischen Softwaresystemen mit zufriedenstellenden funktionalen und qualitativen Eigenschaften. Durch die Integration sowohl von praktischen wie auch theoretischen Aspekten der Softwaretechnik in eine vollständige Entwicklungsmethodik bietet diese Arbeit einen Fahrplan und Richtlinien für die Erstellung neuer physiologischer Rechenanwendungen.
Dokumententyp: | Dissertationen (Dissertation, LMU München) |
---|---|
Keywords: | software engineering, physiological computing, reconfiguration, formal verification |
Themengebiete: | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
000 Allgemeines, Informatik, Informationswissenschaft |
Fakultäten: | Fakultät für Mathematik, Informatik und Statistik |
Sprache der Hochschulschrift: | Englisch |
Datum der mündlichen Prüfung: | 22. Dezember 2011 |
1. Berichterstatter:in: | Wirsing, Martin |
MD5 Prüfsumme der PDF-Datei: | 4ef6256047582f5d2fbb649766b809d4 |
Signatur der gedruckten Ausgabe: | 0001/UMC 20020 |
ID Code: | 13929 |
Eingestellt am: | 30. Jan. 2012 12:37 |
Letzte Änderungen: | 24. Oct. 2020 03:09 |