iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/s11760-015-0838-5
Dimension reduction using global and local pattern information-based maximum margin criterion | Signal, Image and Video Processing Skip to main content
Log in

Dimension reduction using global and local pattern information-based maximum margin criterion

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Dimension reduction is an important research area in pattern recognition when dealing with high- dimensional data. In this paper, a novel supervised dimension reduction approach is introduced for classification. Advantages of using not only global pattern information but also local pattern information are examined in the maximum margin criterion framework. Experimental comparative results in object recognition, handwritten digit recognition, and hyperspectral image classification are presented. According to the experimental results, the proposed method can be a valuable choice for dimension reduction when considering the difficulty of obtaining training samples for some applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  2. Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29, 40–51 (2007)

    Article  Google Scholar 

  3. Li, D.-L., Prasad, M., Hsu, S.-C., Hong, C.-T., Lin, C.: Face recognition using nonparametric-weighted fisherfaces. EURASIP J. Adv. Signal Process. 2012, 92 (2012). doi:10.1186/1687-6180-2012-92

  4. Zhang, D., He, J., Zhao, Y., Luo, Z., Du, M.: Global plus local: a complete framework for feature extraction and recognition. Pattern Recogn. 47(3), 1433–1442 (2014)

    Article  MATH  Google Scholar 

  5. Guo, Y., Hastie, T., Tibshirani, R.: Regularized linear discriminant analysis and its application in microarrays. Biostatistics 8(1), 86–100 (2007)

    Article  MATH  Google Scholar 

  6. Ahdesmäki, M., Korbinian, S.: Feature selection in omics prediction problems using cat scores and false nondiscovery rate control. Ann. Appl. Stat. 4(1), 503–519 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Witten, D.M., Tibshirani, R.: Penalized classification using Fisher’s linear discriminant. J. R. Stat. Soc. Ser. B Stat. Methodol. 73(5), 753–772 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kuo, B.-C., Landgrebe, D.: Nonparametric weighted feature extraction for classification. IEEE Trans. Geosci. Remote Sens. 42(5), 1096–1105 (2004)

    Article  Google Scholar 

  9. Sakarya, U.: Hyperspectral dimension reduction using global and local information based linear discriminant analysis. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. II–7, 61–66 (2014)

    Google Scholar 

  10. Sakarya, U.: Thermal infrared hyperspectral dimension reduction experiment results for global and local information based linear discriminant analysis. In: IEEE 23rd signal processing, communication and applications conference, Malatya, Turkey, May 16–19 (2015)

  11. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, USA (2001)

    MATH  Google Scholar 

  12. Li, X., Jiang, T., Zhang, K.: Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neural Netw. 17(1), 157–165 (2006)

    Article  Google Scholar 

  13. Chen, L.-F., Liao, H.-Y.M., Ko, M.-T., Lin, J.-C., Yu, G.-J.: A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recogn. 33(10), 1713–1726 (2000)

    Article  Google Scholar 

  14. Gao, Q., Liu, J., Zhang, H., Hou, J., Yang, X.: Enhanced fisher discriminant criterion for image recognition. Pattern Recogn. 45(10), 3717–3724 (2012)

    Article  Google Scholar 

  15. Song, Y., Nie, F., Zhang, C., Xiang, S.: A unified framework for semi-supervised dimensionality reduction. Pattern Recogn. 41(9), 2789–2799 (2008)

    Article  MATH  Google Scholar 

  16. Nene, S., Nayar, S., Murase, H.: Columbia Object Image Library (COIL-100), February 1996. [Online]. http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php. Access date 27 Jan 2014

  17. USPS Database, [Online]. http://www.ee.columbia.edu/~xlx/ee4830/hws/usps_digits.mat. Access date 18 Mar 2014

  18. AVIRIS NW Indiana’s Indian Pines 1992 data set, [Online]. ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C.tif.zip (data), ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/ThyFiles.zip (ground truth). Access date 07 May 2012

  19. Foody, G.M.: Status of land cover classification accuracy assessment. Remote Sens. Environ. 80(1), 185–201 (2002)

    Article  Google Scholar 

  20. R Core Team, R: A Language and Environment for Statistical Computing, [Online] http://www.R-project.org/, Vienna, Austria (2014)

  21. Hijmans, R.J.: raster: Geographic data analysis and modeling, R package version 2.3-24. [Online], http://CRAN.R-project.org/package=raster (2015)

  22. Bengtsson, H.: R.matlab: Read and write of MAT files together with R-to-MATLAB connectivity, R package version 2.2.3. [Online] http://CRAN.R-project.org/package=R.matlab (2014)

  23. Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., Mount, D., Li, S.: FNN: Fast Nearest Neighbor Search Algorithms and Applications, R package version 1.1. [Online] http://CRAN.R-project.org/package=FNN (2013)

  24. Venables, W.N., Ripley, B.D. (2002) Modern Applied Statistics with S, Fourth dü. Springer, New York (2002)

  25. Hastie, Y.G.T., Tibshirani, R.: rda: Shrunken Centroids Regularized Discriminant Analysis, R package version 1.0.2-2. [Online] http://CRAN.R-project.org/package=rda (2012)

  26. Ahdesmaki, M., Zuber, V., Gibb, S., Strimmer, K.: sda: Shrinkage Discriminant Analysis and CAT Score Variable Selection, R package version 1.3.6. [Online] http://CRAN.R-project.org/package=sda (2015)

  27. Witten, D.: penalizedLDA: Penalized classification using Fisher’s linear discriminant, R package version 1.0. [Online] http://CRAN.R-project.org/package=penalizedLDA (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ufuk Sakarya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakarya, U. Dimension reduction using global and local pattern information-based maximum margin criterion. SIViP 10, 903–909 (2016). https://doi.org/10.1007/s11760-015-0838-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0838-5

Keywords

Navigation