Abstract
Dimension reduction is an important research area in pattern recognition when dealing with high- dimensional data. In this paper, a novel supervised dimension reduction approach is introduced for classification. Advantages of using not only global pattern information but also local pattern information are examined in the maximum margin criterion framework. Experimental comparative results in object recognition, handwritten digit recognition, and hyperspectral image classification are presented. According to the experimental results, the proposed method can be a valuable choice for dimension reduction when considering the difficulty of obtaining training samples for some applications.
Similar content being viewed by others
References
Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)
Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29, 40–51 (2007)
Li, D.-L., Prasad, M., Hsu, S.-C., Hong, C.-T., Lin, C.: Face recognition using nonparametric-weighted fisherfaces. EURASIP J. Adv. Signal Process. 2012, 92 (2012). doi:10.1186/1687-6180-2012-92
Zhang, D., He, J., Zhao, Y., Luo, Z., Du, M.: Global plus local: a complete framework for feature extraction and recognition. Pattern Recogn. 47(3), 1433–1442 (2014)
Guo, Y., Hastie, T., Tibshirani, R.: Regularized linear discriminant analysis and its application in microarrays. Biostatistics 8(1), 86–100 (2007)
Ahdesmäki, M., Korbinian, S.: Feature selection in omics prediction problems using cat scores and false nondiscovery rate control. Ann. Appl. Stat. 4(1), 503–519 (2010)
Witten, D.M., Tibshirani, R.: Penalized classification using Fisher’s linear discriminant. J. R. Stat. Soc. Ser. B Stat. Methodol. 73(5), 753–772 (2011)
Kuo, B.-C., Landgrebe, D.: Nonparametric weighted feature extraction for classification. IEEE Trans. Geosci. Remote Sens. 42(5), 1096–1105 (2004)
Sakarya, U.: Hyperspectral dimension reduction using global and local information based linear discriminant analysis. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. II–7, 61–66 (2014)
Sakarya, U.: Thermal infrared hyperspectral dimension reduction experiment results for global and local information based linear discriminant analysis. In: IEEE 23rd signal processing, communication and applications conference, Malatya, Turkey, May 16–19 (2015)
Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, USA (2001)
Li, X., Jiang, T., Zhang, K.: Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neural Netw. 17(1), 157–165 (2006)
Chen, L.-F., Liao, H.-Y.M., Ko, M.-T., Lin, J.-C., Yu, G.-J.: A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recogn. 33(10), 1713–1726 (2000)
Gao, Q., Liu, J., Zhang, H., Hou, J., Yang, X.: Enhanced fisher discriminant criterion for image recognition. Pattern Recogn. 45(10), 3717–3724 (2012)
Song, Y., Nie, F., Zhang, C., Xiang, S.: A unified framework for semi-supervised dimensionality reduction. Pattern Recogn. 41(9), 2789–2799 (2008)
Nene, S., Nayar, S., Murase, H.: Columbia Object Image Library (COIL-100), February 1996. [Online]. http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php. Access date 27 Jan 2014
USPS Database, [Online]. http://www.ee.columbia.edu/~xlx/ee4830/hws/usps_digits.mat. Access date 18 Mar 2014
AVIRIS NW Indiana’s Indian Pines 1992 data set, [Online]. ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C.tif.zip (data), ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/ThyFiles.zip (ground truth). Access date 07 May 2012
Foody, G.M.: Status of land cover classification accuracy assessment. Remote Sens. Environ. 80(1), 185–201 (2002)
R Core Team, R: A Language and Environment for Statistical Computing, [Online] http://www.R-project.org/, Vienna, Austria (2014)
Hijmans, R.J.: raster: Geographic data analysis and modeling, R package version 2.3-24. [Online], http://CRAN.R-project.org/package=raster (2015)
Bengtsson, H.: R.matlab: Read and write of MAT files together with R-to-MATLAB connectivity, R package version 2.2.3. [Online] http://CRAN.R-project.org/package=R.matlab (2014)
Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., Mount, D., Li, S.: FNN: Fast Nearest Neighbor Search Algorithms and Applications, R package version 1.1. [Online] http://CRAN.R-project.org/package=FNN (2013)
Venables, W.N., Ripley, B.D. (2002) Modern Applied Statistics with S, Fourth dü. Springer, New York (2002)
Hastie, Y.G.T., Tibshirani, R.: rda: Shrunken Centroids Regularized Discriminant Analysis, R package version 1.0.2-2. [Online] http://CRAN.R-project.org/package=rda (2012)
Ahdesmaki, M., Zuber, V., Gibb, S., Strimmer, K.: sda: Shrinkage Discriminant Analysis and CAT Score Variable Selection, R package version 1.3.6. [Online] http://CRAN.R-project.org/package=sda (2015)
Witten, D.: penalizedLDA: Penalized classification using Fisher’s linear discriminant, R package version 1.0. [Online] http://CRAN.R-project.org/package=penalizedLDA (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sakarya, U. Dimension reduction using global and local pattern information-based maximum margin criterion. SIViP 10, 903–909 (2016). https://doi.org/10.1007/s11760-015-0838-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-015-0838-5