iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/s11760-015-0784-2
No-reference image quality assessment using Prewitt magnitude based on convolutional neural networks | Signal, Image and Video Processing Skip to main content

Advertisement

Log in

No-reference image quality assessment using Prewitt magnitude based on convolutional neural networks

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

No-reference image quality assessment is of great importance to numerous image processing applications, and various methods have been widely studied with promising results. These methods exploit handcrafted features in the transformation or space domain that are discriminated for image degradations. However, abundant a priori knowledge is required to extract these handcrafted features. The convolutional neural network (CNN) is recently introduced into the no-reference image quality assessment, which integrates feature learning and regression into one optimization process. Therefore, the network structure generates an effective model for estimating image quality. However, the image quality score obtained by the CNN is based on the mean of all of the image patch scores without considering the human visual system, such as edges and contour of images. In this paper, we combine the CNN and the Prewitt magnitude of segmented images and obtain the image quality score using the mean of all the products of the image patch scores and weights based on the result of segmented images. Experimental results on various image distortion types demonstrate that the proposed algorithm achieves good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thung, K.H., Paramesran, R.: A survey of image quality measures. In: Proceedings of international conference for technical postgraduates (TECHPOS). pp. 1–4 (2009)

  2. Sheikh, H.R., Bovik, A.C., de Veciana, G.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Process. 14(12), 2117–2128 (2005)

    Article  Google Scholar 

  3. Zhang, L., Zhang, D., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  4. Li, Qiang, Wang, Zhou: Reduced-reference image quality assessment using divisive normalization-based image representation. IEEE Signal Process. Soc. 2(3), 202–211 (2009)

    Google Scholar 

  5. Narwaria, M., Lin, W., McLoughlin, I., Emmanuel, S., Chia, L.T.: Fourier transform based scalable image quality measure. IEEE Trans. Image Process. 21(8), 3364–3377 (2012)

  6. Moorthy, A.K., Bovik, A.C.: A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 17(5), 513–516 (2010)

  7. Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)

    Article  MathSciNet  Google Scholar 

  8. Saad, M., Bovik, A.C., Charrier, C.: Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)

  9. Ye, P., Kumar, J., Kang, L., Doermann, D.: Unsupervised feature learning framework for no-reference image quality assessment. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1098–1105 (2012)

  10. Mittal, A., Moorthy, A., Bovik, A.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  11. Kang, L., Ye, P.: Convolutional neutral networks for no-reference image quality assessment. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

  12. Narwaria, M., Lin, W.: Objective image quality assessment based on support vector regression. IEEE Trans. Neural Netw. 21(3), 515–519 (2010)

  13. Narwaria, M., Lin, W.: SVD-based quality metric for image and video using machine learning. IEEE Trans. Syst. Man Cybern. Part B 42(2), 347–364 (2012)

  14. Narwaria, M., Lin, W.S., Enis Cetin, A.: Scalable image quality assessment with 2D mel-cepstrum and machine learning approach. Pattern Recognit. 45, 299–313 (2012)

    Article  Google Scholar 

  15. Chen, G.-H., Yang, C.-L., Xie, S.-L.: Gradient-based structural similarity for image quality assessment, conference: image processing. IEEE International Conference-ICIP, pp. 2929–2932 (2006)

  16. Deng, L., Hinton, G.E., Kingsbury, B.: New types of deep neural network learning for speech recognition and related applications: an overview. In: IEEE International Conference on Acoustic Speech and Signal Processing (ICASSP 2013) (2013)

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. NIPS 1, 4 (2012)

    Google Scholar 

  18. Felzenszwalb, PedroF, Huttenlocher, DanielP: Efficient graph-based image segmentation. Int. J. Comput. Vis.—IJCV 59(2), 167–181 (2004)

    Article  Google Scholar 

  19. Mittal, A., Moorthy, A., Bovik, A.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  20. Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: LIVE image quality assessment database release2. http://live.ece.utexas.edu/research/quality

  21. Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: TID2008: a dataset for evaluation of full-reference visual quality assessment metrics. Adv. Mod. Radio Electron. 10, 30–45 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zou, L., Yan, J. et al. No-reference image quality assessment using Prewitt magnitude based on convolutional neural networks. SIViP 10, 609–616 (2016). https://doi.org/10.1007/s11760-015-0784-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0784-2

Keywords

Navigation