iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/s11554-011-0215-8
A multi-processor NoC-based architecture for real-time image/video enhancement | Journal of Real-Time Image Processing Skip to main content
Log in

A multi-processor NoC-based architecture for real-time image/video enhancement

  • Special Issue
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

The paper presents a multi-processor architecture for real-time and low-power image and video enhancement applications. Differently from other state-of-the-art parallel architectures the proposed solution is composed of heterogeneous tiles. The tiles have computational and memory capabilities, support different algorithmic classes and are connected by a novel Network-on-Chip (NoC) infrastructure. The proposed packet-switched data transfer scheme avoids communication bottlenecks when more tiles are working concurrently. The functional performances of the NoC-based multi-processor architecture are assessed by presenting the achieved results when the platform is programmed to support different enhancement algorithms for still images or videos. The implementation complexity of the NoC-based multi-tile platform, integrated in 65 nm CMOS technology, is reported and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mitra, S., Sicuranza, G.: Non linear image processing. Academic Press (2001). ISBN 0125004516

  2. Marshall, S., Sicuranza, G.: Advances in non linear signal and image processing. EURASIP book series, Hindawi Publishing Corp (2006). ISBN 9775945372

  3. Marsi, S., Impoco, G., Ukovich, A., Ramponi, G., Carrato, S.: “Using a recursive rational filter to enhance color images”. IEEE. Trans. Instrum. Meas 57, 1230–1236 (2008)

    Article  Google Scholar 

  4. Funt, B., Ciurea, F., McCann, J.:“Retinex in Matlab”. Proc. IS&T/SID 8th Color Imaging Conf. 112–121 (2000)

  5. Jobson, D.J., Rahman, Z., Woodell, G.A.: “Properties and performance of a center/surround Retinex”. IEEE. Trans. Image. Process 6(3), 451–462 (1997)

    Article  Google Scholar 

  6. Hines G., et al.: “Real-time enhanced vision system”. Proc. SPIE 5802: enhanced and synthetic vision (2005)

  7. Shao, Ling, Hao, Hu, de Haan, G.: Coding artifacts robust resolution up-conversion. IEEE. ICIP 5, 409–412 (2007)

    Google Scholar 

  8. Ling Shao, Kirenko, I., Leitao, A., Mydlowski, P.: “Motion-compensated techniques for enhancement of low-quality compressed videos”, IEEE. ICASSP. 1349–1352 (2009)

  9. N. Parakh, A. Mittal, R. Niyogi, “Optimization of MPEG 2 Encoder on Cell B. E. Processor”. IEEE. Int. Adv. Comput. Conf. 423–427 (2009)

  10. Nickolls, J., Dally, W.J.: The GPU computing era. IEEE. Micro 30(2), 56–69 (2010)

    Article  Google Scholar 

  11. Xiaohan Ma, Mian Dong, Lin Zhong, Zhigang Deng.: “Statistical power consumption analysis and modeling for GPU-based computing”, workshop on power aware computing and systems, Big Sky, MT, USA, October (2009)

  12. QuickLogic’s Visual Enhancement Engine (VEE) Brings iridix® to Mobile Devices, (2010)

  13. Chang, Chia-Ming., Chien, Shao-Yi., Tsao, You-Ming., Sun, Chih-Hao., Lok, Ka-Hang., Cheng, Yu-Jung .:“Energy-saving techniques for low-power graphics processing unit”. ISOCC. 1, 242–245 (2008)

  14. Nam, Byeong-Gyu, Lee, Jeabin, Kim, Kwanho, Lee, Seungjin, Yoo, Hoi-Jun: Cost-effective low-power graphics processing unit for handheld devices. IEEE Commun. Mag 46(4), 152–159 (2008)

    Article  Google Scholar 

  15. Murphy, M., Keutzer, K., Wang, H.: “Image feature extraction for mobile processors”. IEEE. IISWC. 138–147 (2009)

  16. Nam, Byeong-Gyu, Yoo, Hoi-Jun: “An embedded stream processor core based on logarithmic arithmetic for a low-power 3-D graphics SoC”. IEEE. J. Solid-State. Circuits 44(5), 1554–1570 (2009)

    Article  Google Scholar 

  17. Fryza, T.: “Introduction to implementation of real time video compression method”. IWSSIP. 217–220 (2008)

  18. Saponara, S., Fanucci, L., Ramponi, G., Marsi, S.: Algorithmic and architectural design for real-time and power-efficient Retinex image/video processing. J. Real-Time. Image. Process 1(4), 267–283 (2007)

    Article  Google Scholar 

  19. Saponara, S., et al.: “Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding”. Microprocess. Microsyst 34, 316–328 (2010)

    Article  Google Scholar 

  20. Fanucci, L., et al.: Parameterized and reusable VLSI macro cells for the low-power realization of 2-D discrete-cosine-transform. Microelectron. J 32(12), 1035–1045 (2001)

    Article  Google Scholar 

  21. iPhone 4 Technical Specifications, available at http://www.apple.com/iphone/specs.html

  22. Saponara, S., et al.: “Dynamic control of motion estimation search parameters for low complex H.264 video coding”. IEEE. Trans. Consumer. Electr 52(1), 232–239 (2006)

    Google Scholar 

  23. Fanucci, L., et al.: A Parametric VLSI architecture for video motion estimation. Integration. VLSI. J 31(1), 79–100 (2001)

    Article  MATH  Google Scholar 

  24. Saponara, S., Fanucci, L.: VLSI design investigation for low-cost, low-power FFT/IFFT processing in advanced VDSL transceivers. Microelectron. J 34(2), 133–148 (2003)

    Article  Google Scholar 

  25. Saponara, S., Fanucci, L., Terreni, P.: Design of a low-power VLSI macrocell for non linear adaptive video noise reduction. J. Appl. Signal. Proc 2004(12), 1921–1930 (2004)

    Article  Google Scholar 

  26. Saponara, S., Denolf, K., Blanch, C., Lafruit, G., Bormans, J.: Performance and complexity co-evaluation of the advanced video coding standard for cost-effective multimedia communications. J. Appl. Signal. Proc 2004(2), 220–235 (2004)

    Article  Google Scholar 

  27. Chimienti, A., et al.: “A complexity-bounded motion estimation algorithm”. IEEE. Trans. Image. Proc 11(4), 387–392 (2002)

    Article  Google Scholar 

  28. Cocchia, F., Carrato, S., Ramponi, G.: “Design and real-time implementation of a 3-D rational filter for edge preserving smoothing”. IEEE. Trans. Consumer. Electronics 43(4), 1291–1300 (1997)

    Article  Google Scholar 

  29. Benini, L., De Micheli, G.: Networks on chip: a new SoC paradigm. IEEE. Comput 35(1), 70–78 (2002)

    Article  Google Scholar 

  30. Gyu Lee H., et al.: “On-chip communication architecture exploration: a quantitative evaluation of point-to-point, bus, and network-on-chip approaches”. ACM. Trans. Des. Automation Electron. Syst. vol. 12, n. 3, (2007)

  31. Maruccia, G., et al.: “Method for transferring a stream of at least one data packet between first and second electric devices and corresponding device”. US Patent 20090129390 A1, May 2009

  32. Vitullo, F., et al.: Low-complexity link micro-architecture for mesochronous communication in networks on chip. IEEE. Trans. Comput 57(9), 1196–1201 (2008)

    Article  MathSciNet  Google Scholar 

  33. Grammatikakis, M.D., Coppola, M., Maruccia, G., Locatelli, R., Pieralisi, L.: “Design of cost-efficient interconnect processing units: Spidergon STNoC”. CRC Press (2008)

  34. Marsi, S., et al.: “Integrated video motion estimator with Retinex-like pre-processing for robust motion analysis in automotive scenarios: algorithmic and real-time architecture design”. J. Real.Time. Image. Proc 5(4), 275–289 (2010)

    Article  Google Scholar 

  35. Saponara, S., et al.: Architectural level power optimization of microcontroller cores in embedded systems. IEEE. Trans. Ind. Electron 54(1), 680–683 (2007)

    Article  Google Scholar 

  36. Fanucci, L., et al.: “Power optimization of an 8051-compliant IP micro controller. IEICE. Trans Electron E 88-C(4), 597–600 (2005)

    Article  Google Scholar 

  37. Ostermann, J., et al.: Video coding with H.264/AVC: tools, performance, and complexity. IEEE. Circuits. Syst. Mag 4(1), 7–28 (2004)

    Article  Google Scholar 

  38. L’insalata, N., et al.: “Automatic synthesis of cost effective FFT/FFT cores for VLSI OFDM systems”. IEICE. Trans. Electron E 91-C(4), 487–496 (2008)

    Article  Google Scholar 

  39. Chimenti, A., et al.: “VLSI architecture for a low-power video codec system”. Microelectron. J 33(5–6), 417–427 (2002)

    Article  Google Scholar 

  40. Saponara, S., et al.: “Architectural exploration and design of Time-interleaved SAR arrays for low-power and high speed A/D converters”. IEICE. Trans. Electron E 92-C(6), 843–851 (2009)

    Article  Google Scholar 

  41. Baronti, F., et al.: “Design and verification of hardware building blocks for high-speed and fault-tolerant in-vehicle networks”. IEEE. Trans. Ind. Electron 58(3), 792–801 (2011)

    Article  Google Scholar 

  42. Saponara, S., et al.: Radiation tolerant space wire router for satellite on-board networking. IEEE. Aerosp. Electron. Syst. Mag 22(5), 3–12 (2007)

    Article  Google Scholar 

Download references

Acknowledgment

This work has been partially supported by the EU integrated project SHAPES of the 6th framework programme in collaboration with STMicroelectronics, particularly the group of Dr. M. Coppola (AST, Grenoble).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Saponara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saponara, S., Fanucci, L. & Petri, E. A multi-processor NoC-based architecture for real-time image/video enhancement. J Real-Time Image Proc 8, 111–125 (2013). https://doi.org/10.1007/s11554-011-0215-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-011-0215-8

Keywords

Navigation