iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/s11128-019-2552-7
Decoy-state round-robin differential-phase-shift quantum key distribution with source errors | Quantum Information Processing Skip to main content
Log in

Decoy-state round-robin differential-phase-shift quantum key distribution with source errors

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

As a promising quantum key distribution (QKD), most of the existing round-robin differential-phase-shift quantum key distribution (RRDPS-QKD) protocols have adopted the decoy-state method and have assumed the source states are exactly controlled. However, the precise manipulation of source states is impossible for any practical experiment, and the RRDPS-QKD with source errors has an unignorable impact on the performance of the protocol. In the paper, we study the four-intensity decoy-state RRDPS-QKD protocol with source errors, formulate the secure generation key rate of the proposed protocol, and do the numerical simulations to testify the deductions. The results show that our evaluation can estimate the influence of source errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050 (1999)

    Article  ADS  Google Scholar 

  2. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  3. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7 (2014)

    Article  MathSciNet  Google Scholar 

  5. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  6. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005)

    Article  ADS  Google Scholar 

  7. Wang, X.B., Yang, L., Peng, C.Z., Pan, J.W.: Decoy-state quantum key distribution with both source errors and statistical fluctuations. New J. Phys. 11(7), 075006 (2009)

    Article  ADS  Google Scholar 

  8. Chi, H.H., Yu, Z.W., Wang, X.B.: Decoy-state method of quantum key distribution with both source errors and statistics fluctuations. Phys. Rev. A 86, 4 (2012)

    Article  Google Scholar 

  9. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  10. Yin, H.L., Chen, T.Y., Yu, Z.W., Liu, H., You, L.X., Zhou, Y.H., Chen, S.J., Mao, Y., Huang, M.Q., Zhang, W.J., Chen, H., Li, M.J., Nolan, D., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.B., Pan, J.W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)

    Article  ADS  Google Scholar 

  11. Gisin, N., Ribordy, G.G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  Google Scholar 

  12. Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum. Inf. Comput 4(5), 325 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509(7501), 475 (2014)

    Article  ADS  Google Scholar 

  14. Mizutani, A., Imoto, N., Tamaki, K.: Robustness of the round-robin differential-phase-shift quantum-key-distribution protocol against source flaws. Phys. Rev. A 92(6), 060303 (2015)

    Article  ADS  Google Scholar 

  15. Zhang, Z., Yuan, X., Cao, Z., Ma, X.: Practical round-robin differential-phase-shift quantum key distribution. New J. Phys. 19, 033013 (2017)

    Article  ADS  Google Scholar 

  16. Sasaki, T., Koashi, M.: A security proof of the round-robin differential phase shift quantum key distribution protocol based on the signal disturbance. Quantum.Sci. Technol 2(2), 024006 (2017)

    Article  ADS  Google Scholar 

  17. Yin, Z.Q., Wang, S., Chen, W., Han, Y.G., Wang, R., Guo, G.C., Han, Z.F.: Improved security bound for the round-robin-differential-phase-shift quantum key distribution. Nat. Commun. 9, 457 (2018)

    Article  ADS  Google Scholar 

  18. Zhang, Y.Y., Bao, W.S., Zhou, C., Li, H.W., Wang, Y., Jiang, M.S.: Practical round-robin differential phase-shift quantum key distribution. Opt. Express 24(18), 20763 (2016)

    Article  ADS  Google Scholar 

  19. Wang, L., Zhao, S.: Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources. Quantum Inf. Process. 16(4), 100 (2017)

    Article  ADS  Google Scholar 

  20. Liu, L., Guo, F.Z., Qin, S.J., Wen, Q.Y.: Round-robin differential-phase-shift quantum key distribution with a passive decoy state method. Sci. Rep. 7, 42261 (2017)

    Article  ADS  Google Scholar 

  21. Hu, K., Mao, Q.P., Zhao, S.M.: Round robin differential phase shift quantum key distribution using heralded single photon source and detector decoy. Acta Opt. Sin. 37(05), 0527002 (2017)

    Article  Google Scholar 

  22. Mao, Q.P., Wang, L., Zhao, S.M.: Plug-and-play round-robin differential phase-shift quantum key distribution. Sci. Rep. 7(1), 15435 (2017)

    Article  ADS  Google Scholar 

  23. Wang, X.B., Peng, C.Z., Zhang, J., Yang, L., Pan, J.W.: General theory of decoy-state quantum cryptography with source errors. Phys. Rev. A 77(4), 042311 (2008)

    Article  ADS  Google Scholar 

  24. Wang, Q., Wang, X.B.: Simulating of the measurement-device independent quantum key distribution with phase randomized general sources. Sci. Rep. 4, 4612 (2014)

    Article  ADS  Google Scholar 

  25. Jiang, C., Yu, Z.W., Wang, X.B.: Measurement-device-independent quantum key distribution with source state errors in photon number space. Phys. Rev. A 94(6), 062323 (2016)

    Article  ADS  Google Scholar 

  26. Wang, S., Zhang, S.L., Li, H.W., Yin, Z.Q., Zhao, Y.B., Chen, W., Han, Z.F., Guo, G.C.: Decoy-state theory for the heralded single-photon source with intensity fluctuations. Phys. Rev. A 79(6), 062309 (2009)

    Article  ADS  Google Scholar 

  27. Zhou, C., Bao, W.S., Fu, X.Q.: Decoy-state quantum key distribution for the heralded pair coherent state photon source with intensity fluctuations. Sci. China Inf Sci. 53(12), 2485 (2010)

    Article  MathSciNet  Google Scholar 

  28. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84(19), 3762 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The paper is supported by the National Natural Science Foundation of China (Grant Nos. 61871234, 61475075, 11847062) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYLX15-0832).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Mei Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The paper is supported by the National Natural Science Foundation of China (Grant Nos. 61871234, 61475075, 11847062) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYLX15-0832)

Appendix

Appendix

In this section, we will give the lower bounds of \(D_0\), \(D_1\), \(D_2\).

In order to get the lower bound of \(D_0\), applying \(p_{1,\nu _1 }^L\) Eq. (9) \(-p_{1,\nu _2 }^U\) Eq. (8), we have

$$\begin{aligned}&p_{1,\nu _1 }^L\frac{{N_{\nu _2 } }}{{P_{\nu _2 } }} - p_{1,\nu _2 }^U \frac{{N_{\nu _1 } }}{{P_{\nu _1 } }} \nonumber \\&\quad = \sum \limits _{i \in c_0 } {\left( {p_{1,\nu _1 }^L p_{0i,\nu _2 } - p_{1,\nu _2 }^U p_{0i,\nu _1 } } \right) d_{0i} } + \sum \limits _{i \in c_1 } {\left( {p_{1,\nu _1 }^L p_{1i,\nu _2 } - p_{1,\nu _2 }^U p_{1i,\nu _1 } } \right) d_{1i} } \nonumber \\&\qquad + \sum \limits _{k = 2}^J {\sum \limits _{i \in c_k } {\left( {p_{1,\nu _1 }^L p_{ki,\nu _2 } - p_{1,\nu _2 }^U p_{ki,\nu _1 } } \right) d_{ki} } } \nonumber \\&\quad \le \sum \limits _{i \in c_0 } {\left( {p_{1,\nu _1 }^L p_{0,\nu _2 }^U - p_{1,\nu _2 }^U p_{0,\nu _1 }^L } \right) d_{0i} } + \sum \limits _{i \in c_1 } {\left( {p_{1,\nu _1 }^L p_{1,\nu _2 }^U - p_{1,\nu _2 }^U p_{1,\nu _1 }^L } \right) d_{1i} } \nonumber \\&\qquad + \sum \limits _{k = 2}^J {\sum \limits _{i \in c_k } {\left( {p_{1,\nu _1 }^L p_{k,\nu _2 }^U - p_{1,\nu _2 }^U p_{k,\nu _1 }^L } \right) d_{ki} } } \nonumber \\&\quad =\left( {p_{1,\nu _1 }^L p_{0,\nu _2 }^U - p_{1,\nu _2 }^U p_{0,\nu _1 }^L } \right) \sum \limits _{i \in c_0 } {d_{0i} }+ \sum \limits _{k = 2}^J \left( {p_{1,\nu _1 }^L p_{k,\nu _2 }^U - p_{1,\nu _2 }^U p_{k,\nu _1 }^L } \right) {\sum \limits _{i \in c_k } {d_{ki} } }. \end{aligned}$$
(21)

According to the definitions of \(D_0\), \(D_1\) and \(D_2\), we get

$$\begin{aligned}&p_{1,\nu _1 }^L\frac{{N_{\nu _2 } }}{{P_{\nu _2 } }} - p_{1,\nu _2 }^U \frac{{N_{\nu _1 } }}{{P_{\nu _1 } }} \nonumber \\&\quad \le \left( {p_{1,\nu _1 }^L p_{0,\nu _2 }^U - p_{1,\nu _2 }^U p_{0,\nu _1 }^L } \right) D_0+\sum \limits _{k = 2}^J \left( {p_{1,\nu _1 }^L p_{k,\nu _2 }^U - p_{1,\nu _2 }^U p_{k,\nu _1 }^L } \right) {D_k}. \end{aligned}$$
(22)

Due to the conditions of Eq.(15), we can obtain an inequality \(p_{1,\nu _1 }^L p_{k,\nu _2 }^U - p_{1,\nu _2 }^U p_{k,\nu _1 }^L \le 0 \quad for\;all\;k \ge 2\). Therefore, the inequality in Eq.(22) becomes

$$\begin{aligned} p_{1,\nu _1 }^L\frac{{N_{\nu _2 } }}{{P_{\nu _2 } }} - p_{1,\nu _2 }^U \frac{{N_{\nu _1 } }}{{P_{\nu _1 } }} \le \left( {p_{1,\nu _1 }^L p_{0,\nu _2 }^U - p_{1,\nu _2 }^U p_{0,\nu _1 }^L } \right) D_0 , \end{aligned}$$
(23)

and the lower bound of \(D_0\) is obtained by

$$\begin{aligned} D_0 \ge D_0^L = \max \left\{ {\frac{{p_{1,\nu _1 }^L \frac{{N_{\nu _2 } }}{{P_{\nu _2 } }} - p_{1,\nu _2 }^U \frac{{N_{\nu _1 } }}{{P_{\nu _1 } }}}}{{p_{1,\nu _1 }^L p_{0,\nu _2 }^U - p_{1,\nu _2 }^U p_{0,\nu _1 }^L }},\,0} \right\} . \end{aligned}$$
(24)

Then, similar to Eq.(21), by \(p_{0,\nu _2 }^L\) Eq. (8) \(-p_{0,\nu _1 }^U\) Eq. (9), we have

$$\begin{aligned}&p_{0,\nu _2 }^L \frac{{N_{\nu _1 } }}{{P_{\nu _1 } }} - p_{0,\nu _1 }^U \frac{{N_{\nu _2 } }}{{P_{\nu _2 } }} \nonumber \\&\quad \le (p_{0,\nu _2 }^L p_{1,\nu _1 }^U - p_{0,\nu _1 }^U p_{1,\nu _2 }^L )D_1 + \sum \limits _{k = 2}^J {\sum \limits _{i \in c_k } {(p_{0,\nu _2 }^L p_{k,\nu _1 }^U - p_{0,\nu _1 }^U p_{k,\nu _2 }^L )d_{ki} } } \nonumber \\&\quad \le (p_{0,\nu _2 }^L p_{1,\nu _1 }^U - p_{0,\nu _1 }^U p_{1,\nu _2 }^L )D_1+ \sum \limits _{k = 2}^J \frac{p_{0,\nu _2 }^L p_{k,\nu _1 }^U - p_{0,\nu _1 }^U p_{k,\nu _2 }^L }{{p_{k,\mu }^L }} {\sum \limits _{i \in c_k } {d_{ki} p_{ki,\mu } } } \nonumber \\&\quad \le (p_{0,\nu _2 }^L p_{1,\nu _1 }^U - p_{0,\nu _1 }^U p_{1,\nu _2 }^L )D_1 + \frac{p_{0,\nu _2 }^L p_{2,\nu _1 }^U - p_{0,\nu _1 }^U p_{2,\nu _2 }^L }{{p_{2,\mu }^L }}[\frac{{N_\mu }}{{P_\mu }} - p_{0,\mu }^L D_0^L - p_{1,\mu }^L D_1 ]. \end{aligned}$$
(25)

Here, the inequality that \(\frac{(p_{0,\nu _2 }^L p_{k,\nu _1 }^U - p_{0,\nu _1 }^U p_{k,\nu _2 }^L )}{{p_{k,\mu }^L }} \le \frac{(p_{0,\nu _2 }^L p_{2,\nu _1 }^U - p_{0,\nu _1 }^U p_{2,\nu _2 }^L )}{{p_{2,\mu }^L }}\) for \(k \ge 2\) is adopted to prove the inequality in Eq.(25). Consequently, the lower bound of \(D_1\) can be estimated by

$$\begin{aligned} D_1 \ge D_1^L = \frac{{(p_{0,\nu _2 }^L \frac{{N_{\nu _1 } }}{{P_{\nu _1 } }} - p_{0,\nu _1 }^U \frac{{N_{\nu _2 } }}{{P_{\nu _2 } }})p_{2,\mu }^L - (p_{0,\nu _2 }^L p_{2,\nu _1 }^U - p_{0,\nu _1 }^U p_{2,\nu _2 }^L )(\frac{{N_\mu }}{{P_\mu }} - p_{0,\mu }^L D_0^L )}}{{(p_{0,\nu _2 }^L p_{1,\nu _1 }^U - p_{0,\nu _1 }^U p_{1,\nu _2 }^L )p_{2,\mu }^L - (p_{0,\nu _2 }^L p_{2,\nu _1 }^U - p_{0,\nu _1 }^U p_{2,\nu _2 }^L )p_{1,\mu }^L }}, \end{aligned}$$
(26)

where \(D_0^L\) has been calculated in Eq.(24).

Combining the two equations [\(p_{0,\nu _2}^L\) Eq. (8)\(-p_{0,\nu _1}^U\) Eq. (9) ] and [\(p_{0,\nu _3}^U\) Eq. (9)\(-p_{0,\nu _2 }^L\) Eq. (10)], we can have

$$\begin{aligned}&(p_{0,\nu _2 }^L \frac{{N_{\nu _1 } }}{{P_{\nu _1 } }} - p_{0,\nu _1 }^U \frac{{N_{\nu _2 } }}{{P_{\nu _2 } }})(p_{0,\nu _3 }^U p_{1,\nu _2 }^L - p_{0,\nu _2 }^L p_{1,\nu _3 }^U ) - (p_{0,\nu _3 }^U \frac{{N_{\nu _2 } }}{{P_{\nu _2 } }} - p_{0,\nu _2 }^L \frac{{N_{\nu _3 } }}{{P_{\nu _3 } }})(p_{0,\nu _2 }^L p_{1,\nu _1 }^U - p_{0,\nu _1 }^U p_{1,\nu _2 }^L ) \nonumber \\&\quad \le [(p_{0,\nu _2 }^L p_{2,\nu _1 }^U - p_{0,\nu _1 }^U p_{2,\nu _2 }^L )(p_{0,\nu _3 }^U p_{1,\nu _2 }^L - p_{0,\nu _2 }^L p_{1,\nu _3 }^U ) - (p_{0,\nu _3 }^U p_{2,\nu _2 }^L - p_{0,\nu _2 }^L p_{2,\nu _3 }^U )(p_{0,\nu _2 }^L p_{1,\nu _1 }^U - p_{0,\nu _1 }^U p_{1,\nu _2 }^L )]D_2 \nonumber \\&\qquad + \sum \limits _{k = 3}^J \frac{{(p_{0,\nu _2 }^L p_{k,\nu _1 }^U - p_{0,\nu _1 }^U p_{k,\nu _2 }^L )(p_{0,\nu _3 }^U p_{1,\nu _2 }^L - p_{0,\nu _2 }^L p_{1,\nu _3 }^U ) - (p_{0,\nu _3 }^U p_{k,\nu _2 }^L - p_{0,\nu _2 }^L p_{k,\nu _3 }^U )(p_{0,\nu _2 }^L p_{1,\nu _1 }^U - p_{0,\nu _1 }^U p_{1,\nu _2 }^L )}}{{p_{k,\mu }^L }}\nonumber \\&\quad \qquad \times {\sum \limits _{i \in c_k } {p_{ki,\mu } d_{ki} } } \nonumber \\&\quad \le [(p_{0,\nu _2 }^L p_{2,\nu _1 }^U - p_{0,\nu _1 }^U p_{2,\nu _2 }^L )(p_{0,\nu _3 }^U p_{1,\nu _2 }^L - p_{0,\nu _2 }^L p_{1,\nu _3 }^U ) - (p_{0,\nu _3 }^U p_{2,\nu _2 }^L - p_{0,\nu _2 }^L p_{2,\nu _3 }^U )(p_{0,\nu _2 }^L p_{1,\nu _1 }^U - p_{0,\nu _1 }^U p_{1,\nu _2 }^L )]D_2 \nonumber \\&\qquad + \frac{{(p_{0,\nu _2 }^L p_{3,\nu _1 }^U - p_{0,\nu _1 }^U p_{3,\nu _2 }^L )(p_{0,\nu _3 }^U p_{1,\nu _2 }^L - p_{0,\nu _2 }^L p_{1,\nu _3 }^U ) - (p_{0,\nu _3 }^U p_{3,\nu _2 }^L - p_{0,\nu _2 }^L p_{3,\nu _3 }^U )(p_{0,\nu _2 }^L p_{1,\nu _1 }^U - p_{0,\nu _1 }^U p_{1,\nu _2 }^L )}}{{p_{3,\mu }^L }} \nonumber \\&\quad \cdot (\frac{{N_\mu }}{{P_\mu }} - p_{0,\mu }^L D_0^L - p_{1,\mu }^L D_1^L - p_{2,\mu }^L D_2 ), \end{aligned}$$
(27)

where the inequality is due to \(\frac{{(p_{0,\nu _2 }^L p_{k,\nu _1 }^U - p_{0,\nu _1 }^U p_{k,\nu _2 }^L )(p_{0,\nu _3 }^U p_{1,\nu _2 }^L - p_{0,\nu _2 }^L p_{1,\nu _3 }^U ) - (p_{0,\nu _3 }^U p_{k,\nu _2 }^L - p_{0,\nu _2 }^L p_{k,\nu _3 }^U )(p_{0,\nu _2 }^L p_{1,\nu _1 }^U - p_{0,\nu _1 }^U p_{1,\nu _2 }^L )}}{{p_{k,\mu }^L }} \le \frac{{(p_{0,\nu _2 }^L p_{3,\nu _1 }^U - p_{0,\nu _1 }^U p_{3,\nu _2 }^L )(p_{0,\nu _3 }^U p_{1,\nu _2 }^L - p_{0,\nu _2 }^L p_{1,\nu _3 }^U ) - (p_{0,\nu _3 }^U p_{3,\nu _2 }^L - p_{0,\nu _2 }^L p_{3,\nu _3 }^U )(p_{0,\nu _2 }^L p_{1,\nu _1 }^U - p_{0,\nu _1 }^U p_{1,\nu _2 }^L )}}{{p_{3,\mu }^L }} \) for \(k\ge 3\).

Hence, the lower bound of \(D_2\) can be expressed by

$$\begin{aligned}&D_2\ge D_2^L \nonumber \\&\quad = \bigg \{\bigg [(p_{0,\nu _2 }^L \frac{{N_{\nu _1 } }}{{P_{\nu _1 } }} - p_{0,\nu _1 }^U \frac{{N_{\nu _2 } }}{{P_{\nu _2 } }})(p_{0,\nu _3 }^U p_{1,\nu _2 }^L - p_{0,\nu _2 }^L p_{1,\nu _3 }^U ) - (p_{0,\nu _3 }^U \frac{{N_{\nu _2 } }}{{P_{\nu _2 } }} - p_{0,\nu _2 }^L \frac{{N_{\nu _3 } }}{{P_{\nu _3 } }})(p_{0,\nu _2 }^L p_{1,\nu _1 }^U - p_{0,\nu _1 }^U p_{1,\nu _2 }^L )\bigg ]p_{3,\mu }^L \nonumber \\&\qquad -\bigg [(p_{0,\nu _2 }^L p_{3,\nu _1 }^U - p_{0,\nu _1 }^U p_{3,\nu _2 }^L )(p_{0,\nu _3 }^U p_{1,\nu _2 }^L - p_{0,\nu _2 }^L p_{1,\nu _3 }^U ) - (p_{0,\nu _3 }^U p_{3,\nu _2 }^L - p_{0,\nu _2 }^L p_{3,\nu _3 }^U )(p_{0,\nu _2 }^L p_{1,\nu _1 }^U - p_{0,\nu _1 }^U p_{1,\nu _2 }^L )\bigg ] \nonumber \\&\quad (\frac{{N_\mu }}{{P_\mu }} - p_{0,\mu }^L D_0^L - p_{1,\mu }^L D_1^L ) \bigg \} \bigg / \bigg \{ \bigg [(p_{0,\nu _2 }^L p_{2,\nu _1 }^U - p_{0,\nu _1 }^U p_{2,\nu _2 }^L )(p_{0,\nu _3 }^U p_{1,\nu _2 }^L - p_{0,\nu _2 }^L p_{1,\nu _3 }^U ) \nonumber \\&\qquad - (p_{0,\nu _3 }^U p_{2,\nu _2 }^L - p_{0,\nu _2 }^L p_{2,\nu _3 }^U )(p_{0,\nu _2 }^L p_{1,\nu _1 }^U \nonumber \\&\qquad - p_{0,\nu _1 }^U p_{1,\nu _2 }^L )\bigg ] p_{3,\mu }^L- \bigg [(p_{0,\nu _2 }^L p_{3,\nu _1 }^U - p_{0,\nu _1 }^U p_{3,\nu _2 }^L )(p_{0,\nu _3 }^U p_{1,\nu _2 }^L - p_{0,\nu _2 }^L p_{1,\nu _3 }^U ) \nonumber \\&\qquad - (p_{0,\nu _3 }^U p_{3,\nu _2 }^L - p_{0,\nu _2 }^L p_{3,\nu _3 }^U )(p_{0,\nu _2 }^L p_{1,\nu _1 }^U - p_{0,\nu _1 }^U p_{1,\nu _2 }^L )\bigg ] p_{2,\mu }^L \bigg \}. \end{aligned}$$
(28)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, QP., Wang, L. & Zhao, SM. Decoy-state round-robin differential-phase-shift quantum key distribution with source errors. Quantum Inf Process 19, 56 (2020). https://doi.org/10.1007/s11128-019-2552-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2552-7

Keywords

Navigation