iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/s10586-021-03279-3
Improving latency in Internet-of-Things and cloud computing for real-time data transmission: a systematic literature review (SLR) | Cluster Computing Skip to main content

Advertisement

Log in

Improving latency in Internet-of-Things and cloud computing for real-time data transmission: a systematic literature review (SLR)

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

To store, analyse and process the large volume of data generated by IoT traditional cloud computing, is used everywhere. However, the traditional cloud data centres have their limitations to handle high latency issues in time-critical applications of IoT and cloud. Their applications are computer gaming, e-healthcare, telemedicine and robot surgery. The high latency in IoTs and cloud includes high computational, communication latency (service) and network latencies. The vital requirement of IoT is to have minimum network, service and computation latencies for real-time applications. Network latency causes a delay in transmitting a message or communication from one location to another. Services that require data in real-time are almost impossible to access the data via the cloud. Traditional cloud computing approaches are unable to fulfil the quality-of-service (QoS) requirements in IoT devices. Researches related to latency reduction techniques are still in infancy. Some new approaches to minimize the latency for transmitting time-sensitive data in real-time are discussed in this paper for cloud and IoT devices. This research will help the researchers and industries to identify the techniques and technologies to minimize the latencies in IoT and cloud. The paper also discusses the research trends and the technical differences between the various technologies and techniques. With the increasing interest in the literature on latency minimization and its requirements for time-sensitive applications; it is important to systematically review and synthesize the approaches, tools, challenges and techniques to minimize latencies in IoT and cloud. This paper aims at systematically reviewing the state of the art of latency minimization to classify approaches, and techniques. The paper uses a PRISMA technique for a systematic review. The paper further identifies challenges and gaps in this regard for future research. We have identified 23 approaches and 32 technologies associated with latencies in the cloud and IoT. A total of 112 papers on latency reduction have been examined under this study. The existing research gaps and works for latency reduction in IoTs are discussed in detail. There are several challenges and gaps, which requires future research work for improving the latency minimization techniques and technologies. Finally, we present some open issues which will determine the future research direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not required in the review article.

Abbreviations

IoT:

Internet-of-Things

FIS:

Fuzzy inference system

FC:

Fog computing

MDP:

Markov decision process

RL:

Reinforcement learning

NN:

Neural network

IDC:

International Data Corporation

NFV:

Network function virtualization

CDC:

Cloud data centers

ICSN:

Information-centric social networks

ICN:

Information-centric network

VNF-RM:

Virtual network function real-time migration

CDN:

Content delivery network

VMM:

Virtual machine migration

ECG:

Electrocardiogram

SFC:

Software function chaining

SPSRP:

Service popularity-based smart resources partitioning

GAP:

Generalized assignment problem

VNF:

Virtual network function

EEG:

Electroencephalogram

NP:

Nondeterministic polynomial time

QoS:

Quality of service

IRC:

Information Resource Center

MS:

Milli seconds

KB:

Kilobytes

MB:

Megabytes

KJ:

Kilojoules

F-RAN:

Fog-radio access networks

VM:

Virtual machines

CBR:

Constant bit rate

VBR:

Variable bit rate

FCSS:

Fog computing security service

CORD:

Central Office Re-architected as a Datacenter

LR:

Literature review

TCP:

Transmission control protocol

EMG:

Electromyography

KBPS:

KiloBytes per second

RAM:

Random access memory

WBAN:

Wireless body area network

SDN:

Software-defined network

PoP:

Post office protocol

SFC:

Software function chaining

WAN:

Wide area network

LAN:

Local area network

F2C:

Fog-to-cloud

LOCPART:

Latency optimized cache partitioning for cloud datacenters

IP:

Internet Protocol

DCQCN:

Datacentre quantized congestion notification

RDMA:

Remote Direct Memory Access Technology

FDM:

Frequency division multiplexing

MEC:

Mobile edge computing

IRS:

Intelligently reflecting surfaces

DDDPG:

Double-duelling-deterministic policy gradient

DDQS:

Double deep Q-learning scheduling

PFC:

Priority-based flow control

References

  1. Hammi, B., Khatoun, R., Zeadally, S., Fayad, A., Khoukhi, L.: IoT technologies for smart cities. IET Netw. 7(1), 1–13 (2017)

    Google Scholar 

  2. Wortmann, F., Flüchter, K.: Internet of things. Bus. Inf. Syst. Eng. 57(3), 221–224 (2015)

    Article  Google Scholar 

  3. Shukla, S., Hassan, M.F., Khan, M.K., Jung, L.T., Awang, A.: An analytical model to minimize the latency in healthcare internet-of-things in fog computing environment. PLoS ONE 14(11), e0224934 (2019)

    Article  Google Scholar 

  4. Brogi, A., Forti, S.: QoS-aware deployment of IoT applications through the fog. IEEE Internet Things J. 4(5), 1185–1192 (2017)

    Article  Google Scholar 

  5. Alicherry, M., Lakshman, T.: Optimizing data access latencies in cloud systems by intelligent virtual machine placement. In: 2013 Proceedings IEEE INFOCOM. IEEE, pp. 647–655 (2013)

  6. Pan, J., McElhannon, J.: Future edge cloud and edge computing for internet of things applications. IEEE Internet Things J. 5(1), 439–449 (2017)

    Article  Google Scholar 

  7. Nandyala, C.S., Kim, H.-K.: From cloud to fog and IoT-based real-time U-healthcare monitoring for smart homes and hospitals. Int. J. Smart Home 10(2), 187–196 (2016)

    Article  Google Scholar 

  8. Sun, X., Ansari, N.: Latency aware workload offloading in the cloudlet network. IEEE Commun. Lett. 21(7), 1481–1484 (2017)

    Article  Google Scholar 

  9. Skorin-Kapov, L., Matijasevic, M.: Analysis of QoS requirements for e-health services and mapping to evolved packet system QoS classes. Int. J. Telemed. Appl. 2010, 9 (2010)

    Google Scholar 

  10. Alam, M.G.R., Tun, Y.K., Hong, C.S.: Multi-agent and reinforcement learning based code offloading in mobile fog. In: 2016 International Conference on Information Networking (ICOIN). IEEE, pp. 285–290 (2016)

  11. Kao, Y.-H., Krishnamachari, B., Ra, M.-R., Bai, F.: Hermes: latency optimal task assignment for resource-constrained mobile computing. IEEE Trans. Mob. Comput. 16(11), 3056–3069 (2017)

    Article  Google Scholar 

  12. Nishtala, R., Carpenter, P., Petrucci, V., Martorell, X.: Hipster: Hybrid task manager for latency-critical cloud workloads. In: 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, pp. 409–420 (2017)

  13. Sajithabanu, S., Balasundaram, S.: Cloud based Content Delivery Network using Genetic Optimization Algorithm for storage cost. In: 2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). IEEE, pp. 1–6 (2016)

  14. Ali, M., Riaz, N., Ashraf, M.I., Qaisar, S., Naeem, M.: Joint cloudlet selection and latency minimization in fog networks. IEEE Trans. Ind. Inf. 14(9), 4055–4063 (2018)

    Article  Google Scholar 

  15. Naas, M.I., Parvedy, P.R., Boukhobza, J., Lemarchand, L.: iFogStor: an IoT data placement strategy for fog infrastructure. In: 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC). IEEE, pp. 97–104 (2017)

  16. Grinnemo, K.-J., Brunstrom, A.: A first study on using MPTCP to reduce latency for cloud based mobile applications. In: 2015 IEEE Symposium on Computers and Communication (ISCC). IEEE, pp. 64–69 (2015)

  17. Habak, K., Ammar, M., Harras, K.A., Zegura, E.: Femto clouds: Leveraging mobile devices to provide cloud service at the edge. In: 2015 IEEE 8th international conference on cloud computing. IEEE, pp. 9–16 (2015)

  18. Lee, M., Kim, Y., Lee, Y.: A home cloud-based home network auto-configuration using SDN. In: 2015 IEEE 12th International conference on networking, sensing and control. IEEE, pp. 444–449 (2015)

  19. Bi, Y., Han, G., Lin, C., Deng, Q., Guo, L., Li, F.: Mobility support for fog computing: an SDN approach. IEEE Commun. Mag. 56(5), 53–59 (2018)

    Article  Google Scholar 

  20. Meng, X., Wang, W., Zhang, Z.: Delay-constrained hybrid computation offloading with cloud and fog computing. IEEE Access 5, 21355–21367 (2017)

    Article  Google Scholar 

  21. Cao, H., Cai, J.: Distributed multiuser computation offloading for cloudlet-based mobile cloud computing: a game-theoretic machine learning approach. IEEE Trans. Veh. Technol. 67(1), 752–764 (2017)

    Article  Google Scholar 

  22. Kargatzis, D., Sotiriadis, S., Petrakis, E.G.: Virtual machine migration in heterogeneous clouds: from openstack to VMWare. In: 2017 IEEE 38th Sarnoff Symposium. IEEE, pp. 1–6 (2017)

  23. Eccles, M.J., Evans, D.J., Beaumont, A.J.: True real-time change data capture with web service database encapsulation. In: 2010 6th World Congress on Services. IEEE, pp. 128–131 (2010)

  24. Kraemer, F.A., Braten, A.E., Tamkittikhun, N., Palma, D.: Fog computing in healthcare—a review and discussion. IEEE Access 5, 9206–9222 (2017)

    Article  Google Scholar 

  25. Sambyo, K., Bhunia, C.T.: Application of multi level ATM in reducing latency in clouds for performance improvement of integrated voice, video and data services. In: 2014 11th International Conference on Information Technology: New Generations. IEEE, pp. 607–607 (2014)

  26. Qin, H.: Locpart: a latency optimized cache partitioning for cloud data centers. In: 2017 4th International Conference on Information Science and Control Engineering (ICISCE). IEEE, pp. 433–437 (2017)

  27. Cho, D., Taheri, J., Zomaya, A.Y., Bouvry, P.: Real-time virtual network function (VNF) migration toward low network latency in cloud environments. In: 2017 IEEE 10th International Conference on Cloud Computing (CLOUD). IEEE, pp. 798–801 (2017)

  28. Yousefpour, A. et al.: FogPlan: a lightweight QoS-aware dynamic fog service provisioning framework. IEEE Internet Things J. (2019)

  29. Pang, A.-C., Chung, W.-H., Chiu, T.-C., Zhang, J.: Latency-driven cooperative task computing in multi-user fog-radio access networks. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). IEEE, pp. 615–624 (2017)

  30. Tuli, S., et al.: Healthfog: An ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated IoT and FoG computing environments. Futur. Gener. Comput. Syst. 104, 187–200 (2020)

    Article  Google Scholar 

  31. Tuli, S., Mahmud, R., Tuli, S., Buyya, R.: Fogbus: a blockchain-based lightweight framework for edge and fog computing. J. Syst. Softw. (2019)

  32. Yang, H., Alphones, A., Zhong, W.-D., Chen, C., Xie, X.: Learning-based energy-efficient resource management by heterogeneous RF/VLC for ultra-reliable low-latency industrial IoT networks. IEEE Trans. Ind. Inf. 16(8), 5565–5576 (2019)

    Article  Google Scholar 

  33. Shi, L., Ahmad, I., He, Y., Chang, K.: Service group based FOFDM-IDMA platform to support massive connectivity and low latency simultaneously in the uplink IoT environment. Wirel. Commun. Mob. Comput. (2020)

  34. Sultania, A.K., Mahfoudhi, F., Famaey, J.: Real-time demand-response using NB-IoT. IEEE Internet Things J. (2020)

  35. Bai, T., Pan, C., Deng, Y., Elkashlan, M., Nallanathan, A., Hanzo, L.: Latency minimization for intelligent reflecting surface aided mobile edge computing. IEEE J. Sel. Areas Commun. 38(11), 2666–2682 (2020)

    Article  Google Scholar 

  36. Fent, P., van Renen, A., Kipf, A., Leis, V., Neumann, T., Kemper, A.: Low-latency communication for fast DBMS using RDMA and shared memory. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, pp. 1477–1488 (2020)

  37. Xiang, Z., Yang, W., Cai, Y., Ding, Z., Song, Y., Zou, Y.: NOMA-assisted secure short-packet communications in IoT. IEEE Wirel. Commun. 27(4), 8–15 (2020)

    Article  Google Scholar 

  38. Hung, S.-C., Liau, D., Lien, S.-Y., Chen, K.-C.: Low latency communication for Internet of Things. In: 2015 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, pp. 1–6 (2015)

  39. Yousefpour, A., Ishigaki, G., Jue, J.P.: Fog computing: towards minimizing delay in the internet of things. In: 2017 IEEE international conference on edge computing (EDGE). IEEE, pp. 17–24 (2017)

  40. Mukherjee, M., Shu, L., Wang, D.: Survey of fog computing: fundamental, network applications, and research challenges. IEEE Commun. Surv. Tutor. 20(3), 1826–1857 (2018)

    Article  Google Scholar 

  41. Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.H., Morrow, M.J., Polakos, P.A.: A comprehensive survey on fog computing: state-of-the-art and research challenges. IEEE Commun. Surv. Tutor. 20(1), 416–464 (2017)

    Article  Google Scholar 

  42. Bittencourt, L. et al.: The internet of things, fog and cloud continuum: integration and challenges. Internet of Things (2018)

  43. Osanaiye, O., Chen, S., Yan, Z., Lu, R., Choo, K.-K.R., Dlodlo, M.: From cloud to fog computing: a review and a conceptual live VM migration framework. IEEE Access 5, 8284–8300 (2017)

    Article  Google Scholar 

  44. Wu, J., Dong, M., Ota, K., Li, J., Guan, Z.: FCSS: Fog computing based content-aware filtering for security services in information centric social networks. IEEE Trans. Emerg. Topics Comput. (2017)

  45. Dinh, N.-T., Kim, Y.: An efficient availability guaranteed deployment scheme for IoT service chains over Fog-Core Cloud Networks. Sensors 18(11), 3970 (2018)

    Article  Google Scholar 

  46. Li, G., Wu, J., Li, J., Wang, K., Ye, T.: Service popularity-based smart resources partitioning for fog computing-enabled industrial Internet of Things. IEEE Trans. Industr. Inf. 14(10), 4702–4711 (2018)

    Article  Google Scholar 

  47. Mahmud, R., Koch, F.L., Buyya, R.: Cloud-fog interoperability in IoT-enabled healthcare solutions. In: Proceedings of the 19th International Conference on Distributed Computing and Networking. ACM, p. 32 (2018)

  48. Wang, J., Li, D.: Adaptive computing optimization in software-defined network-based industrial Internet of Things with Fog Computing. Sensors 18(8), 2509 (2018)

    Article  Google Scholar 

  49. Banaie, F., Yaghmaee, M.H., Hosseini, A., Tashtarian, F.: Load-balancing algorithm for multiple gateways in Fog-based Internet of Things. IEEE Internet Things J. (2020)

  50. Martinez, I., Jarray, A., Hafid, A.S.: Scalable design and dimensioning of Fog-Computing infrastructure to support latency sensitive IoT applications. IEEE Internet Things J. (2020)

  51. Goudarzi, M., Wu, H., Palaniswami, M.S., Buyya, R.: An application placement technique for concurrent iot applications in edge and fog computing environments. IEEE Trans. Mob. Comput. (2020)

  52. Chang, Z., Liu, L., Guo, X., Sheng, Q.: Dynamic resource allocation and computation offloading for IoT Fog computing system. IEEE Trans. Ind. Inform. (2020)

  53. Awaisi, K.S., Hussain, S., Ahmed, M., Khan, A.A., Ahmed, G.: Leveraging IoT and Fog computing in healthcare systems. IEEE Internet Things Mag. 3(2), 52–56 (2020)

    Article  Google Scholar 

  54. Soo, S., Chang, C., Loke, S.W., Srirama, S.N.: Dynamic Fog Computing: practical processing at mobile edge devices. In: Algorithms, Methods, and Applications in Mobile Computing and Communications: IGI Global, pp. 24–47 (2019)

  55. Bellavista, P., Berrocal, J., Corradi, A., Das, S.K., Foschini, L., Zanni, A.: A survey on fog computing for the Internet of Things. Pervasive Mob. Comput. 52, 71–99 (2019)

    Article  Google Scholar 

  56. Soleymani, S.A., et al.: A secure trust model based on fuzzy logic in vehicular ad hoc networks with fog computing. IEEE Access 5, 15619–15629 (2017)

    Article  Google Scholar 

  57. Rafique, H., Shah, M.A., Islam, S.U., Maqsood, T., Khan, S., Maple, C.: A novel bio-inspired hybrid algorithm (NBIHA) for efficient resource management in fog computing. IEEE Access 7, 115760–115773 (2019)

    Article  Google Scholar 

  58. Aburukba, R.O., AliKarrar, M., Landolsi, T., El-Fakih, K.: Scheduling Internet of Things requests to minimize latency in hybrid Fog–Cloud computing. Futur. Gener. Comput. Syst. 111, 539–551 (2020)

    Article  Google Scholar 

  59. Singh, S.K., Rathore, S., Park, J.H.: Blockiotintelligence: a blockchain-enabled intelligent IoT architecture with artificial intelligence. Futur. Gener. Comput. Syst. 110, 721–743 (2020)

    Article  Google Scholar 

  60. Lu, H., He, X., Du, M., Ruan, X., Sun, Y., Wang, K.: Edge QoE: computation offloading with deep reinforcement learning for Internet of Things. IEEE Internet Things J. (2020)

  61. Chen, C., Chen, Y., Zhang, K., Ni, M., Wang, S., Liang, R.: System redundancy enhancement of secondary frequency control under latency attacks. IEEE Trans. Smart Grid (2020)

  62. Khanh, T.T., Oo, T.Z., Tran, N.H., Huh, E.-N., Hong, C.S.: Latency minimization in a fuzzy-based mobile edge orchestrator for IoT applications. IEEE Commun. Lett. (2020)

  63. Gowri, A.: Fog resource allocation through machine learning algorithm. In: Architecture and Security Issues in Fog Computing Applications: IGI Global, pp. 1–41 (2020)

  64. Gazori, P., Rahbari, D., Nickray, M.: Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach. Futur. Gener. Comput. Syst. 110, 1098–1115 (2020)

    Article  Google Scholar 

  65. Jiang, J., Li, Z., Tian, Y., Al-Nabhan, N.: A review of techniques and methods for IoT applications in collaborative Cloud-Fog Environment. Secur. Commun. Netw. (2020)

  66. Zhang, L., Ansari, N.: Latency-aware IoT service provisioning in UAV-aided mobile-edge computing networks. IEEE Internet Things J. 7(10), 10573–10580 (2020)

    Article  Google Scholar 

  67. Ren, H., Pan, C., Deng, Y., Elkashlan, M., Nallanathan, A.: Resource allocation for secure URLLC in mission-critical IoT scenarios. IEEE Trans. Commun. 68(9), 5793–5807 (2020)

    Article  Google Scholar 

  68. Elgarhy, O., Reggiani, L., Malik, H., Alam, M.M., Imran, M.A.: Rate-latency optimization for NB-IoT with adaptive resource unit configuration in uplink transmission. IEEE Syst. J. (2020)

  69. Mudassar, M., Zhai, Y., Liao, L., Shen, J.: A decentralized latency-aware task allocation and group formation approach with fault tolerance for IoT applications. IEEE Access 8, 49212–49223 (2020)

    Article  Google Scholar 

  70. Tian, C., et al.: P-PFC: reducing tail latency with predictive PFC in lossless data center networks. IEEE Trans. Parallel Distrib. Syst. 31(6), 1447–1459 (2020)

    Article  Google Scholar 

  71. Cavalcante, E., et al.: On the interplay of Internet of Things and Cloud Computing: a systematic mapping study. Comput. Commun. 89, 17–33 (2016)

    Article  Google Scholar 

  72. Liu, Y., Fieldsend, J.E., Min, G.: A framework of fog computing: Architecture, challenges, and optimization. IEEE Access 5, 25445–25454 (2017)

    Article  Google Scholar 

  73. Name, H.A.M., Oladipo, F.O., Ariwa, E.: User mobility and resource scheduling and management in fog computing to support IoT devices. In: 2017 Seventh International Conference on Innovative Computing Technology (INTECH). IEEE, pp. 191–196 (2017)

  74. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)

    Article  Google Scholar 

  75. Masri, W., Al Ridhawi, I., Mostafa, N., Pourghomi, P.: Minimizing delay in IoT systems through collaborative fog-to-fog (F2F) communication. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN). IEEE, pp. 1005–1010 (2017)

  76. Naha, R.K., et al.: Fog Computing: survey of trends, architectures, requirements, and research directions. IEEE access 6, 47980–48009 (2018)

    Article  Google Scholar 

  77. Li, J., Jin, J., Yuan, D., Zhang, H.: Virtual fog: a virtualization enabled fog computing framework for Internet of Things. IEEE Internet Things J. 5(1), 121–131 (2017)

    Article  Google Scholar 

  78. Seshadri, S.S. et al.: Iotcop: a blockchain-based monitoring framework for detection and isolation of malicious devices in internet-of-things systems. IEEE Internet Things J. (2020)

  79. Jamil, B., Shojafar, M., Ahmed, I., Ullah, A., Munir, K., Ijaz, H.: A job scheduling algorithm for delay and performance optimization in fog computing. Concurr. Comput. 32(7), e5581 (2020)

    Article  Google Scholar 

  80. Baker, S.B., Xiang, W., Atkinson, I.: Internet of things for smart healthcare: technologies, challenges, and opportunities. IEEE Access 5, 26521–26544 (2017)

    Article  Google Scholar 

  81. Ouedraogo, C.A., Medjiah, S., Chassot, C., Drira, K., Aguilar, J.: A cost-effective approach for end-to-end QoS management in NFV-enabled IoT platforms. IEEE Internet Things J. (2020)

  82. Yang, H.-C., Bao, T., Alouini, M.-S.: Transient performance limits for ultra-reliable low-latency communications over fading channels. IEEE Trans. Veh. Technol. 69(11), 13970–13973 (2020)

    Article  Google Scholar 

  83. Qi, Q., Tao, F.: A smart manufacturing service system based on edge computing, fog computing, and cloud computing. IEEE Access 7, 86769–86777 (2019)

    Article  Google Scholar 

  84. Brous, P., Janssen, M., Herder, P.: The dual effects of the Internet of Things (IoT): a systematic review of the benefits and risks of IoT adoption by organizations. Int. J. Inf. Manag. 51, 101952 (2020)

    Article  Google Scholar 

  85. Lee, W., Nam, K., Roh, H.-G., Kim, S.-H.: A gateway based fog computing architecture for wireless sensors and actuator networks. In: 2016 18th International Conference on Advanced Communication Technology (ICACT). IEEE, pp. 210–213 (2016)

  86. Taneja, M., Davy, A.: Resource aware placement of data analytics platform in fog computing. Procedia Comput. Sci. 97, 153–156 (2016)

    Article  Google Scholar 

  87. Rahmani, A.M., et al.: Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: a fog computing approach. Futur. Gener. Comput. Syst. 78, 641–658 (2018)

    Article  Google Scholar 

  88. Baek, J.-Y., Kaddoum, G., Garg, S., Kaur, K., Gravel, V.: Managing Fog Networks using reinforcement learning based load balancing algorithm. arXiv preprint arXiv:1901.10023 (2019)

  89. Hosseinpour, F., Plosila, J., Tenhunen, H.: An approach for smart management of big data in the fog computing context. In: 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). IEEE, pp. 468–471 (2016)

  90. Bibani, O. et al.: A demo of iot healthcare application provisioning in hybrid cloud/fog environment. In: 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). IEEE, pp. 472–475 (2016)

  91. Marie, P., Desprats, T., Chabridon, S., Sibilla, M.: Enabling self-configuration of QoC-centric fog computing entities. In: 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). IEEE, pp. 526–533 (2016)

  92. Kai, K., Cong, W., Tao, L.: Fog computing for vehicular ad-hoc networks: paradigms, scenarios, and issues. J. China Univ. Posts Telecommun. 23(2), 56–96 (2016)

    Article  Google Scholar 

  93. Deng, R., Lu, R., Lai, C., Luan, T.H., Liang, H.: Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet Things J. 3(6), 1171–1181 (2016)

    Google Scholar 

  94. Gao, L., Luan, T.H., Yu, S., Zhou, W., Liu, B.: FogRoute: DTN-based data dissemination model in fog computing. IEEE Internet Things J. 4(1), 225–235 (2016)

    Google Scholar 

  95. Badawy, M.M., Ali, Z.H., Ali, H.A.: Qos provisioning framework for service-oriented internet of things (iot). Clust. Comput. pp. 1–17 (2019)

  96. Lyu, L., Jin, J., Rajasegarar, S., He, X., Palaniswami, M.: Fog-empowered anomaly detection in IoT using hyperellipsoidal clustering. IEEE Internet Things J. 4(5), 1174–1184 (2017)

    Article  Google Scholar 

  97. Shi, Y., Ding, G., Wang, H., Roman, H.E., Lu, S.: The fog computing service for healthcare. In: 2015 2nd International Symposium on Future Information and Communication Technologies for Ubiquitous HealthCare (Ubi-HealthTech). IEEE, pp. 1–5 (2015)

  98. Gia, T.N., Jiang, M., Rahmani, A.-M., Westerlund, T., Liljeberg, P., Tenhunen, H.: Fog computing in healthcare internet of things: a case study on ECG feature extraction. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing. IEEE, pp. 356–363 (2015)

  99. Aazam, M., Huh, E.-N.: Fog computing and smart gateway based communication for cloud of things. In: 2014 International Conference on Future Internet of Things and Cloud. IEEE, pp. 464–470 (2014)

  100. Diallo, O., Rodrigues, J.J., Sene, M., Niu, J.: Real-time query processing optimization for cloud-based wireless body area networks. Inf. Sci. 284, 84–94 (2014)

    Article  Google Scholar 

  101. de Arriba-Pérez, F., Caeiro-Rodríguez, M., Santos-Gago, J.: Collection and processing of data from wrist wearable devices in heterogeneous and multiple-user scenarios. Sensors 16(9), 1538 (2016)

    Article  Google Scholar 

  102. Verma, S., Yadav, A.K., Motwani, D., Raw, R., Singh, H.K.: An efficient data replication and load balancing technique for fog computing environment. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom). IEEE, pp. 2888–2895 (2016)

  103. Sundharakumar, K., Dhivya, S., Mohanavalli, S., Chander, R.V.: Cloud based fuzzy healthcare system. Procedia Comput. Sci. 50, 143–148 (2015)

    Article  Google Scholar 

  104. Hassan, M.M., Lin, K., Yue, X., Wan, J.: A multimedia healthcare data sharing approach through cloud-based body area network. Futur. Gener. Comput. Syst. 66, 48–58 (2017)

    Article  Google Scholar 

  105. Quwaider, M., Jararweh, Y.: Multi-tier cloud infrastructure support for reliable global health awareness system. Simul. Model. Pract. Theory 67, 44–58 (2016)

    Article  Google Scholar 

  106. Chiang, H.-P., Lai, C.-F., Huang, Y.-M.: A green cloud-assisted health monitoring service on wireless body area networks. Inf. Sci. 284, 118–129 (2014)

    Article  Google Scholar 

  107. Sharma, P.K., Chen, M.-Y., Park, J.H.: A software defined fog node based distributed blockchain cloud architecture for IoT. IEEE Access 6, 115–124 (2017)

    Article  Google Scholar 

  108. Diogo, P., Lopes, N.V., Reis, L.P.: An ideal IoT solution for real-time web monitoring. Clust. Comput. 20(3), 2193–2209 (2017)

    Article  Google Scholar 

  109. Pourghebleh, B., Hayyolalam, V.: A comprehensive and systematic review of the load balancing mechanisms in the Internet of Things. Clust. Comput. 1–21 (2019)

  110. Patel, Y.S., Reddy, M., Misra, R.: Energy and cost trade-off for computational tasks offloading in mobile multi-tenant clouds. Clust. Comput. 1–32 (2021)

  111. Masip-Bruin, X., Marín-Tordera, E., Tashakor, G., Jukan, A., Ren, G.-J.: Foggy clouds and cloudy fogs: a real need for coordinated management of fog-to-cloud computing systems. IEEE Wirel. Commun. 23(5), 120–128 (2016)

    Article  Google Scholar 

  112. Ghanbari, Z., Navimipour, N.J., Hosseinzadeh, M., Darwesh, A.: Resource allocation mechanisms and approaches on the Internet of Things. Clust. Comput. 22(4), 1253–1282 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Centre of Graduate Studies, Computer and Information Science Department, Universiti Teknologi PETRONAS, Malaysia for their expertise and cooperation in this research.

Funding

Using project allowance and self-finance.

Author information

Authors and Affiliations

Authors

Contributions

SS, MFH, DCT: Conceptualization. SS, MFH, DCT: Formal analysis. SS, MFH, IVP: Investigation. MFH, MKK: Supervision. SS: Writing-original draft. SS, MFH, DCT, RA: Writing-review & editing.

Corresponding author

Correspondence to Saurabh Shukla.

Ethics declarations

Conflict of interest

Saurabh Shukla, Mohd. Fadzil Hassan, Duc Chung Tran, Rehan Akbar, Irving Vitra Paputungan and Muhammad Khalid Khan declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, S., Hassan, M.F., Tran, D.C. et al. Improving latency in Internet-of-Things and cloud computing for real-time data transmission: a systematic literature review (SLR). Cluster Comput 26, 2657–2680 (2023). https://doi.org/10.1007/s10586-021-03279-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03279-3

Keywords

Navigation