iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/s10514-011-9241-4
Search and pursuit-evasion in mobile robotics | Autonomous Robots Skip to main content
Log in

Search and pursuit-evasion in mobile robotics

A survey

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper surveys recent results in pursuit-evasion and autonomous search relevant to applications in mobile robotics. We provide a taxonomy of search problems that highlights the differences resulting from varying assumptions on the searchers, targets, and the environment. We then list a number of fundamental results in the areas of pursuit-evasion and probabilistic search, and we discuss field implementations on mobile robotic systems. In addition, we highlight current open problems in the area and explore avenues for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adler, M., Räcke, H., Sivadasan, N., Sohler, C., & Vöcking, B. (2003). Randomized pursuit-evasion in graphs. Combinatorics, Probability & Computing, 12(3), 225–244.

    Article  MATH  Google Scholar 

  • Aigner, M., & Fromme, M. (1984). A game of cops and robbers. Discrete Applied Mathematics, 8(1), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  • Alexander, S., Bishop, R., & Ghrist, R. (2006). Pursuit and evasion in non-convex domains of arbitrary dimensions. In Proc. robotics: science and systems conference.

    Google Scholar 

  • Alexander, S., Bishop, R., & Ghrist, R. (2009). Capture pursuit games on unbounded domains. L’Enseignement Mathématique, 55, 103–125.

    MathSciNet  MATH  Google Scholar 

  • Alonso, L., Goldstein, A. S., & Reingold, E. M. (1992). Lion and man: upper and lower bounds. INFORMS Journal on Computing, 4(4), 447.

    Article  MathSciNet  MATH  Google Scholar 

  • Alspach, B. (2004). Searching and sweeping graphs: a brief survey. Matematiche, 59, 5–37.

    MathSciNet  MATH  Google Scholar 

  • Assaf, D., & Zamir, S. (1985). Optimal sequential search: a Bayesian approach. Annals of Statistics, 13(3), 1213–1221.

    Article  MathSciNet  MATH  Google Scholar 

  • Barrière, L., Fraigniaud, P., Santoro, N., & Thilikos, D. (2003). Searching is not jumping, graph-theoretic concepts in computer. Science, 2880, 34–45.

    Google Scholar 

  • Başar, T., & Olsder, G. J. (1999). Dynamic noncooperative game theory. Philadelphia: Society for Industrial Mathematics.

    MATH  Google Scholar 

  • Benkoski, S. J., Monticino, M. G., & Weisinger, J. R. (1991). A survey of the search theory literature. Naval Research Logistics, 38(4), 469–494.

    Article  MATH  Google Scholar 

  • Bhadauria, D., & Isler, V. (2011). Capturing an evader in a polygonal environment with obstacles. In Proc. international joint conference on artificial intelligence.

    Google Scholar 

  • Bhattacharya, S., & Hutchinson, S. (2010). On the existence of Nash equilibrium for a visibility based pursuit evasion game. The International Journal of Robotics Research, 29(7), 831–839.

    Article  Google Scholar 

  • Bienstock, D., & Seymour, P. D. (1991). Monotonicity in graph searching. Journal of Algorithms, 12(2), 239–245.

    Article  MathSciNet  MATH  Google Scholar 

  • Bopardikar, S. D., Bullo, F., & Hespanha, J. P. (2007). Sensing limitations in the Lion and Man problem. In Proc. American control conference (pp. 5958–5963).

    Chapter  Google Scholar 

  • Borie, R., Tovey, C., & Koenig, S. (2009). Algorithms and complexity results for pursuit-evasion problems. In Proc. international joint conference on artificial intelligence (pp. 59–66).

    Google Scholar 

  • Bourgault, F., Furukawa, T., & Durrant-Whyte, H. F. (2003). Coordinated decentralized search for a lost target in a Bayesian world. In Proc. IEEE/RSJ international conference on intelligent robots and systems (pp. 48–53).

    Google Scholar 

  • Bourgault, F., Furukawa, T., & Durrant-Whyte, H. F. (2006). Optimal search for a lost target in a Bayesian world. Field and Service Robotics, 24, 209–222.

    Article  Google Scholar 

  • Chew, M. C. (1967). A sequential search procedure. Annals of Mathematical Statistics, 38(2), 494–502.

    Article  MathSciNet  MATH  Google Scholar 

  • Chew, M. C., & Milton, C. (1973). Optimal stopping in a discrete search problem. Operations Research, 21(3), 741–747.

    Article  MathSciNet  MATH  Google Scholar 

  • Dambreville, F., & Cadre, J. P. L. (2002). Search game for a moving target with dynamically generated informations. In Proc. international conference on information fusion (pp. 243–250).

    Google Scholar 

  • Dobbie, J. M. (1968). A survey of search theory. Operations Research, 16(3), 525–537.

    Article  MATH  Google Scholar 

  • Dobbie, J. M. (1973). Some search problems with false contacts. Operations Research, 21(4), 907–925.

    Article  MathSciNet  MATH  Google Scholar 

  • Eagle, J. N., & Yee, J. R. (1990). An optimal branch-and-bound procedure for the constrained path, moving target search problem. Operations Research, 38(1), 110–114.

    Article  MathSciNet  MATH  Google Scholar 

  • Eaton, J., & Zadeh, L. (1962). Optimal pursuit strategies in discrete-state probabilistic systems. Journal of Basic Engineering, 84, 23–28.

    MathSciNet  Google Scholar 

  • Fomin, F. V., & Thilikos, D. M. (2008). An annotated bibliography on guaranteed graph searching. Theoretical Computer Science, 399(3), 236–245.

    Article  MathSciNet  MATH  Google Scholar 

  • Gerkey, B., Thrun, S., & Gordon, G. (2005). Parallel stochastic hill-climbing with small teams. In Proc. international NRL workshop on multi-robot systems.

    Google Scholar 

  • Goldstein, A. S., & Reingold, E. M. (1995). The complexity of pursuit on a graph. Theoretical Computer Science, 143(1), 93–112.

    MathSciNet  MATH  Google Scholar 

  • Goodrich, M., Morse, B., Gerhardt, D., Cooper, J., Quigley, M., Adams, J., & Humphrey, C. (2008). Supporting wilderness search using a camera-equipped UAV. Journal of Field Robotics, 25(1–2), 89–110.

    Article  Google Scholar 

  • Guibas, L., Latombe, J., LaValle, S., Lin, D., & Motwani, R. (1999). Visibility-based pursuit-evasion in a polygonal environment. International Journal of Computational Geometry and Applications, 9(5), 471–494.

    Article  MathSciNet  Google Scholar 

  • Hespanha, J., Prandini, M., & Sastry, S. (2000). Probabilistic pursuit-evasion games: a one-step Nash approach. In Proc. IEEE conference on decision and control (pp. 2272–2277).

    Google Scholar 

  • Hohzaki, R. (2007). Discrete search allocation game with false contacts. Naval Research Logistics, 54(1), 46–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Hollinger, G., Singh, S., Djugash, J., & Kehagias, A. (2009). Efficient multi-robot search for a moving target. The International Journal of Robotics Research, 28(2), 201–219.

    Article  Google Scholar 

  • Hollinger, G., Kehagias, A., & Singh, S. (2010a). GSST: anytime guaranteed search. Autonomous Robots, 29(1), 99–118.

    Article  Google Scholar 

  • Hollinger, G., Kehagias, A., & Singh, S. (2010b). Improving the efficiency of clearing with multi-agent teams. The International Journal of Robotics Research, 29(8), 1088–1105.

    Article  Google Scholar 

  • Isler, V., & Karnad, N. (2008). The role of information in the cop-robber game. Theoretical Computer Science, 3(399), 179–190 Special issue on graph searching.

    Article  MathSciNet  Google Scholar 

  • Isler, V., Kannan, S., & Khanna, S. (2005). Randomized pursuit-evasion in a polygonal environment. IEEE Transactions on Robotics, 21(5), 875–884.

    Article  Google Scholar 

  • Isler, V., Kannan, S., & Khanna, S. (2006). Randomized pursuit-evasion with local visibility. SIAM Journal on Discrete Mathematics, 1(20), 26–41.

    Article  MathSciNet  Google Scholar 

  • Jankovic, V. (1978). About a man and lions. Matematički Vesnik, 2, 359–361.

    MathSciNet  Google Scholar 

  • Kadane, J. (1971). Optimal whereabouts search. Operations Research, 19(4), 894–904.

    Article  MathSciNet  MATH  Google Scholar 

  • Kalbaugh, D. (1992). Optimal search among false contacts. SIAM Journal on Applied Mathematics, 52(6), 1722–1750.

    Article  MathSciNet  MATH  Google Scholar 

  • Karnad, N., & Isler, V. (2008). Bearing-only pursuit. In Proc. IEEE international conference on robotics and automation (pp. 2665–2670).

    Google Scholar 

  • Katsilieris, F., Lindhé, M., Dimarogonas, D., Ögren, P., & Johansson, K. (2010). Demonstration of multi-robot search and secure. In Proc. ICRA workshop on search and pursuit/evasion.

    Google Scholar 

  • Kimeldorf, G., & Smith, F. (1979). Binomial searching for a random number of multinomially hidden objects. Management Science, 25(11), 1115–1126.

    Article  MathSciNet  MATH  Google Scholar 

  • Kolling, A., & Carpin, S. (2010). Pursuit-evasion on trees by robot teams. IEEE Transactions on Robotics, 26(1), 32–47.

    Article  Google Scholar 

  • Kolling, A., Kleiner, A., Lewis, M., & Sycara, K. (2010). Pursuit-evasion in 2.5D based on team-visibility. In Proc. IEEE/RSJ international conference on intelligent robots and systems (pp. 4610–4616).

    Google Scholar 

  • Kolling, A., Kleiner, A., Lewis, M., & Sycara, K. (2011). Computing and executing strategies for moving target search. In Proc. IEEE international conference on robotics and automation (pp. 4246–423).

    Google Scholar 

  • Koopman, B. O. (1956a). The theory of search. Part I. Kinematic bases. Operations Research, 4(5), 324–346.

    Article  MathSciNet  Google Scholar 

  • Koopman, B. O. (1956b). The theory of search. Part II. Target detection. Operations Research, 4(5), 503–531.

    Article  MathSciNet  Google Scholar 

  • Koopman, B. O. (1957). The theory of search. Part III. The optimum distribution of searching effort. Operations Research, 5(5), 613–626.

    Article  MathSciNet  Google Scholar 

  • Koopman, B. O. (1979). Search and its optimization. The American Mathematical Monthly, 86(7), 527–540.

    Article  MathSciNet  MATH  Google Scholar 

  • Kopparty, S., & Ravishankar, C. V. (2005). A framework for pursuit evasion games in Rn. Information Processing Letters, 96(3), 114–122.

    Article  MathSciNet  MATH  Google Scholar 

  • Kress, M., Lin, K. Y., & Szechtman, R. (2008). Optimal discrete search with imperfect specificity. Mathematical Methods of Operations Research, 68(3), 539–549.

    Article  MathSciNet  MATH  Google Scholar 

  • LaPaugh, A. S. (1993). Recontamination does not help to search a graph. Journal of the Association for Computing Machinery, 40(2), 224–245.

    Article  MathSciNet  MATH  Google Scholar 

  • Lau, H., Huang, S., & Dissanayake, G. (2005). Optimal search for multiple targets in a built environment. In Proc. IEEE/RSJ international conference on intelligent robots and systems (pp. 3740–3745).

    Chapter  Google Scholar 

  • Lau, H., Huang, S., & Dissanayake, G. (2006). Probabilistic search for a moving target in an indoor environment. In Proc. IEEE/RSJ international conference on intelligent robots and systems (pp. 3393–3398).

    Chapter  Google Scholar 

  • LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • LaValle, S., Lin, D., Guibas, L., Latombe, J., & Motwani, R. (1997). Finding an unpredictable target in a workspace with obstacles. In Proc. IEEE international conference on robotics and automation (pp. 737–742).

    Google Scholar 

  • Lazebnik, S. (2001). Visibility-based pursuit-evasion in three-dimensional environments. Technical report, CVR-TR-2001-01, Beckman Institute, University of Illinois at Urbana-Champaign.

  • Lenstra, J. K., & Kan, A. H. G. R. (1981). Complexity of vehicle routing and scheduling problems. Networks, 11(2), 221–227.

    Article  Google Scholar 

  • Littlewood, J. E. (1953). A mathematician’s miscellany. London: Methuen & Co.

    MATH  Google Scholar 

  • McCue, B. (1990). U-boats in the bay of Biscay: an essay in operations analysis. National Defense University Press.

  • Megiddo, N., Hakimi, S., Garey, M., Johnson, D., & Papadimitriou, C. (1988). The complexity of searching a graph. Journal of the Association for Computing Machinery, 35(1), 18–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Murrieta-Cid, R., Muppirala, T., Sarmiento, A., Bhattacharya, S., & Hutchinson, S. (2007). Surveillance strategies for a pursuer with finite sensor range. The International Journal of Robotics Research, 26(3), 233–253.

    Article  Google Scholar 

  • Nowakowski, R., & Winkler, P. (1983). Vertex-to-vertex pursuit in a graph. Discrete Mathematics, 43(2–3), 235–239.

    Article  MathSciNet  MATH  Google Scholar 

  • Ong, S. C. W., Png, S. W., Hsu, D., & Lee, W. S. (2010). Planning under uncertainty for robotic tasks with mixed observability. The International Journal of Robotics Research, 29(8), 1053–1068.

    Article  Google Scholar 

  • Park, S.-M., Lee, J.-H., & Chwa, K.-Y. (2001). Visibility-based pursuit-evasion in a polygonal region by a searcher. In Proc. international colloquium on automata, languages and programming (pp. 456–468).

    Chapter  Google Scholar 

  • Parsons, T. (1976). Pursuit-evasion in a graph. In Y. Alavi & D. Lick (Eds.), Theory and applications of graphs (pp. 426–441). Berlin: Springer.

    Google Scholar 

  • Ross, S. M. (1969). A problem in optimal search and stop. Operations Research, 17(6), 984–992.

    Article  MathSciNet  MATH  Google Scholar 

  • Roy, N., Gordon, G., & Thrun, S. (2005). Finding approximate POMDP solutions through belief compression. The Journal of Artificial Intelligence Research, 23, 1–40.

    Article  MATH  Google Scholar 

  • Sato, H., & Royset, J. O. (2010). Path optimization for the resource-constrained searcher. Naval Research Logistics, 57(5), 422–440.

    MathSciNet  MATH  Google Scholar 

  • Sgall, J. (2001). Solution of David Gale’s lion and man problem. Theoretical Computer Science, 259(1–2), 663–670.

    Article  MathSciNet  MATH  Google Scholar 

  • Stone, L. D. (1989a). Theory of optimal search (2nd edn.). San Diego: Academic Press.

    Google Scholar 

  • Stone, L. D. (1989b). What’s happened in search theory since the 1975 Lanchester prize? Operations Research, 37(3), 501–506.

    Article  MathSciNet  Google Scholar 

  • Tisdale, J., Kim, Z., & Hedrick, J. K. (2009). Autonomous path planning and estimation using UAVs. IEEE Robotics & Automation Magazine, 16(2), 35–42.

    Article  Google Scholar 

  • Toth, P., & Vigo, D. (2002). The vehicle routing problem. Philadelphia: Society for Industrial Mathematics.

    Book  MATH  Google Scholar 

  • Trummel, K. E., & Weisinger, J. R. (1986). The complexity of the optimal searcher path problem. Operations Research, 34(2), 324–327.

    Article  MathSciNet  MATH  Google Scholar 

  • Vidal, R., Shakernia, O., Kim, H. J., Shim, D. H., & Sastry, S. (2002). Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE transactions on robotics and automation, 18(5), 662–669.

    Article  Google Scholar 

  • Vieira, M., Govindan, R., & Sukhatme, G. S. (2009). Scalable and practical pursuit-evasion with networked robots. Journal of Intelligent Service Robotics, 2(4), 247–263.

    Article  Google Scholar 

  • Wagner, D. H. (1999). Naval operations analysis. Annapolis: United States Naval Institute.

    Google Scholar 

  • Washburn, A. R. (1983). Search for a moving target: the FAB algorithm. Operations Research, 31(4), 739–751.

    Article  MATH  Google Scholar 

  • Washburn, A. R. (1998). Branch and bound methods for a search problem. Naval Research Logistics, 45(3), 243–257.

    Article  MathSciNet  MATH  Google Scholar 

  • Washburn, A. R. (2002). Search and detection. Topics in operations research series (4th edn.) INFORMS.

  • Wegener, I. (1985). Optimal search with positive switch cost is NP-hard. Information Processing Letters, 21(1), 49–52.

    Article  MathSciNet  MATH  Google Scholar 

  • Wong, E.-M., Bourgault, F., & Furukawa, T. (2005). Multi-vehicle Bayesian search for multiple lost targets. In Proc. IEEE international conference on robotics and automation (pp. 3169–3174).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey A. Hollinger.

Additional information

The authors have been listed alphabetically based on equal contribution to the article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, T.H., Hollinger, G.A. & Isler, V. Search and pursuit-evasion in mobile robotics. Auton Robot 31, 299–316 (2011). https://doi.org/10.1007/s10514-011-9241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-011-9241-4

Keywords

Navigation