Abstract
Age-related macular degeneration is a complex, multifactorial, and neurodegenerative disease that is the third cause of blindness after cataracts and glaucoma. To date, there are no effective remedies available for treating the disease. Therefore, the main goal of the scientific community is to uncover the underlying role that both genetics and environmental factors play in the development of the disease. Nevertheless, the complexity of the domain, the heterogeneity of the information, and the massive amounts of existing data hinder the daily work of clinical experts to provide an accurate diagnosis and treatment. In this work, we present how clinicians can benefit from the development of ontologically well-grounded information systems to support the management of both clinical and genomic data. First, we summarize the results obtained in a previous work that cover the clinical perspective using an information system called G-MAC, that has been specially developed for the management of clinical data. Then, we present the results of an exhaustive study of the genetic factors of age-related macular degeneration by using an information system that was developed with the aim of enhancing the management of complex genomic data. Finally, we state how the connection of both perspectives through the use of conceptual models can benefit clinicians and patients through a more accurate Medicine of Precision.
Similar content being viewed by others
Notes
Angular-CLI (command line interpreter), https://angular.io/cli
References
National Eye Institute: Age-related macular degeneration (2021) https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/age-related-macular-degeneration
de Jong, E.K., Geerlings, M.J., den Hollander, A.I.: Age-related macular degeneration. Genet. Genom. Eye Dis. 1, 155–180 (2020). https://doi.org/10.1016/B978-0-12-816222-4.00010-1
Katta, S., Kaur, I., Chakrabarti, S.: The molecular genetic basis of age-related macular degeneration: an overview. J. Genet. 88(4), 425–449 (2009). https://doi.org/10.1007/s12041-009-0064-4
Resnikoff, S., Pascolini, D., Etya’Ale, D., Kocur, I., Pararajasegaram, R., Pokharel, G.P., Mariotti, S.P.: Global data on visual impairment in the year 2002. Bull. World Health Organ. 82, 844–851 (2004)
Velez-Montoya, R., Oliver, S.C., Olson, J.L., Fine, S.L., Quiroz-Mercado, H., Mandava, N.: Current knowledge and trends in age-related macular degeneration: genetics, epidemiology, and prevention. Retina 34(3), 423–441 (2014). https://doi.org/10.1097/IAE.0000000000000036
Loewenstein, A.: The significance of early detection of age-related macular degeneration: Richard and Hinda Rosenthal foundation lecture, the macula society 29th annual meeting. Retina 27(7), 873–878 (2007). https://doi.org/10.1097/IAE.0b013e318050d2ec
Boyer, D.S., Antoszyk, A.N., Awh, C.C., Bhisitkul, R.B., Shapiro, H., Acharya, N.R., MARINA Study Group: Subgroup analysis of the MARINA study of ranibizumab in neovascular age-related macular degeneration. Ophthalmology 114(2), 246–252 (2007). https://doi.org/10.1016/j.ophtha.2006.10.045
Olivé, A.: Conceptual Modeling of Information Systems. Springer Science and Business Media, Berlin (2007). https://doi.org/10.1007/978-3-540-39390-0
Reyes Román, J. F., Marco-Palomares, A., García S. A., Pastor, O.: A model-based application for the effective and efficient management of data associated with retina-macula pathology. In: Enterprise, Business-Process and Information Systems Modeling, pp. 366–379. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79186-5_24
León, A., Pastor, Ó.: Enhancing precision medicine: a big data-driven approach for the management of genomic data. Big Data Res. 26, 100253 (2021). https://doi.org/10.1016/j.bdr.2021.100253
Reyes Román, J. F. (2018). Diseño y desarrollo de un sistema de información genómica basado en un modelo conceptual holístico del genoma humano (Doctoral dissertation, Universitat Politècnica de València). https://doi.org/10.4995/Thesis/10251/99565
García, A., León Palacio, A., Reyes Román, J.F., Casamayor, J.C., Pastor, O.: Towards the understanding of the human genome: a holistic conceptual modeling approach. IEEE Access 8, 197111–197123 (2020). https://doi.org/10.1109/ACCESS.2020.3034793
Aguilera, D., Gómez, C., Olivé, A.: Enforcement of conceptual schema quality issues in current integrated development environments. In: International Conference on Advanced Information Systems Engineering, pp. 626–640. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38709-8_40
Delcambre, L.M., Liddle, S.W., Pastor, O., Storey, V.C.: A reference framework for conceptual modeling. In: International Conference on Conceptual Modeling, pp. 27–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_4
Paton, N.W., Khan, S.A., Hayes, A., Moussouni, F., Brass, A., Eilbeck, K., Oliver, S.G.: Conceptual modelling of genomic information. Bioinformatics 16(6), 548–557 (2000). https://doi.org/10.1093/bioinformatics/16.6.548
Bornberg-Bauer, E., Paton, N.W.: Conceptual data modelling for bioinformatics. Brief. Bioinform. 3(2), 166–180 (2002). https://doi.org/10.1093/bib/3.2.166
Ram, S., Wei, W.: Modeling the semantics of 3D protein structures. In: International Conference on Conceptual Modeling, pp. 696–708. Springer, Berlin, Heidelberg (2004. https://doi.org/10.1007/978-3-540-30464-7_52
Eilbeck, K., Lewis, S.E., Mungall, C.J., et al.: The sequence ontology: a tool for the unification of genome annotations. Genome Biol. 6, R44 (2005). https://doi.org/10.1186/gb-2005-6-5-r44
Vihinen, M.: Variation ontology for annotation of variation effects and mechanisms. Genome Res. 24(2), 356–364 (2014). https://doi.org/10.1101/gr.157495.113
Ashburner, M., Ball, C., Blake, J., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000). https://doi.org/10.1038/75556
Pastor, Ó., León, A., Reyes Román, J.F., García, A.S., Casamayor, J.C.: Using conceptual modeling to improve genome data management. Brief. Bioinform. 22(1), 45–54 (2021). https://doi.org/10.1093/bib/bbaa100
Burriel Coll, V. (2017). Diseño y desarrollo de un sistema de información para la gestión de información sobre Cáncer de mama (Doctoral dissertation, Universitat Politècnica de València). https://doi.org/10.4995/Thesis/10251/86158
Arevshatyan, S., Reyes Román, J.F., Burriel, V., Cañete, A., Castel, V., Pastor, Ó.: Integration and analysis of clinical and genomic data of neuroblastoma applying conceptual modeling. (2019)
Wieringa, R.: Design Science Methodology for Information Systems and Software Engineering, pp. 1–332. Springer-Verlag, Berlin Heidelberg (2014). https://doi.org/10.1007/978-3-662-43839-8
Marco Palomares, A.: Desarrollo dirigido por modelos para el análisis y gestión de los datos asociados a la patología macular. (Master Thesis, Universitat Politècnica de València) (2020). http://hdl.handle.net/10251/151886
Jenny Preece, H.S., Rogers, Y.: Interaction design: beyond human-computer interaction. (2015)
Seddon, J.M., Reynolds, R., Maller, J., Fagerness, J.A., Daly, M.J., Rosner, B.: Prediction model for prevalence and incidence of advanced age-related macular degeneration based on genetic, demographic, and environmental variables. Investig. Ophthalmol. Vis. Sci. 50(5), 2044–2053 (2009). https://doi.org/10.1167/iovs.08-3064
Fritsche, L.G., Fariss, R.N., Stambolian, D., Abecasis, G.R., Curcio, C.A., Swaroop, A.: Age-related macular degeneration: genetics and biology coming together. Annu. Rev. Genom. Hum. Genet. 15, 151–171 (2014). https://doi.org/10.1146/annurev-genom-090413-025610
Nurk, S., Koren, S., Rhie, A., Rautiainen, M., et al.: The complete sequence of a human genome. Science 376(6588), 44–53 (2022). https://doi.org/10.1126/science.abj6987
Bonnans, C., Chou, J., Werb, Z.: Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15(12), 786–801 (2014). https://doi.org/10.1038/nrm3904
Folkman, J.: Angiogenesis. Annu. Rev. Med. 57, 1–18 (2006). https://doi.org/10.1146/annurev.med.57.121304.131306
Beatty, S., Koh, H.H., Phil, M., Henson, D., Boulton, M.: The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol. 45(2), 115–134 (2000). https://doi.org/10.1016/S0039-6257(00)00140-5
Vavvas, D.G., Small, K.W., Awh, C.C., Zanke, B.W., Tibshirani, R.J., Kustra, R.: CFH and ARMS2 genetic risk determines progression to neovascular age-related macular degeneration after antioxidant and zinc supplementation. Proc. Natl. Acad. Sci. 115(4), E696–E704 (2018). https://doi.org/10.1073/pnas.1718059115
Seddon, J.M., Silver, R.E., Rosner, B.: Response to AREDS supplements according to genetic factors: survival analysis approach using the eye as the unit of analysis. Br. J. Ophthalmol. 100(12), 1731–1737 (2016). https://doi.org/10.1136/bjophthalmol-2016-308624
Brown, D.M., Michels, M., Kaiser, P.K., Heier, J.S., Sy, J.P., Ianchulev, T.: Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology 116(1), 57–65 (2009). https://doi.org/10.1016/j.ophtha.2008.10.018
Tsilimbaris, M.K., López-Gálvez, M.I., Gallego-Pinazo, R., Margaron, P., Lambrou, G.N.: Epidemiological and clinical baseline characteristics as predictive biomarkers of response to anti-VEGF treatment in patients with neovascular AMD. J. Ophthalmol. (2016). https://doi.org/10.1155/2016/4367631
Lorés-Motta, L., de Jong, E.K., den Hollander, A.I.: Exploring the use of molecular biomarkers for precision medicine in age-related macular degeneration. Mol. Diagn. Ther. 22(3), 315–343 (2018). https://doi.org/10.1007/s40291-018-0332-1
García Simón, A., Costa Sánchez, M., Pastor, O.: Characterization and treatment of the temporal dimension of genomic variations: a conceptual model-based approach. In: International Conference on Conceptual Modeling, pp. 104–113. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88358-4_9
Reyes Román, J.F., Pastor, O., Casamayor, J.C., Valverde, F.: Applying conceptual modeling to better understand the human genome. In: International Conference on Conceptual Modeling, pp. 404–412. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_31
García, A., León Palacio, A., Reyes Román, J. F., Casamayor, J. C., Pastor, O.: A conceptual model-based approach to improve the representation and management of omics data in precision medicine. IEEE Access 9, 154071–154085 (2021). https://doi.org/10.1109/ACCESS.2021.3128757
León Palacio, A., Pastor, Ó., Casamayor Ródenas, J.C.: A method to identify relevant genome data: conceptual modeling for the medicine of precision. In: International Conference on Conceptual Modeling, pp. 597–609. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_44
León Palacio, A., Pastor, Ó.: Smart data for genomic information systems: the SILE method. Complex Syst. Inform. Model. Q. 17, 1–23 (2018). https://doi.org/10.7250/csimq.2018-17.01
Plazzotta, F., Luna, D., Bernaldo, González, de Quirós, F.: Sistemas de información en salud: integrando datos clínicos en diferentes escenarios y usuarios. Rev. Peru. Med. Exp. Salud Públ. 32(2), 343–351 (2015)
Instituto de Microcirugía Ocular: DMAE: Síntomas y tratamientos | IMO. (2018) https://www.imo.es/es/dmae
Pardo, I.C., Varona, D.G., de Miranda Remedios, D.I.: Degeneración macular relacionada con la edad. Arch. Méd. Camagüey 12(2), 1–22 (2008)
Ruiz-Moreno, J.M., Arias-Barquet, L., Armadá-Maresca, F., Boixadera-Espax, A., García-Layana, A., GÚIAS-DE PRÁDE PRÁCTICA CLÍNICA DE LA SERV:Tratamiento de la Degeneración Macular Asociada a la Edad (DMAE) Exudativa y Atrófica”. (Segunda revisión) Arch. Soc. Española Oftalmol. 84(7),333–344 (2009)
García, A., Reyes Román, J.F., Casamayor, J.C., Pastor, O.: Towards an effective and efficient management of genome data: an information systems engineering perspective. In: International Conference on Advanced Information Systems Engineering, pp. 99–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21297-1_9
Baird, P.N., Hageman, G.S., Guymer, R.H.: New era for personalized medicine: the diagnosis and management of age-related macular degeneration. Clin. Exp. Ophthalmol. 37(8), 814–821 (2009). https://doi.org/10.1111/j.1442-9071.2009.02136.x
Senra, H., Macedo, A.F., Nunes, N., Balaskas, K., Aslam, T., Costa, E.: Psychological and psychosocial interventions for depression and anxiety in patients with age-related macular degeneration: a systematic review. Am. J. Geriatr. Psychiatry 27(8), 755–773 (2019). https://doi.org/10.1016/j.jagp.2019.03.001
Mehta, S.: Age-related macular degeneration. Prim. Care Clin. Off. Pract. (2015). https://doi.org/10.1016/j.pop.2015.05.009
Acknowledgements
The authors would like to thank the members of the PROS Research Center Genome group for the fruitful discussions regarding the application of CM in the medical field. This work was supported by the Valencian Innovation Agency and Innovation through the OGMIOS project (INNEST/2021/57), the Preparatory Action - UPV-FISABIO (A36-G-MAC, 2019), the Generalitat Valenciana through the CoMoDiD project (CIPROM/2021/023), and the Spanish State Research Agency through the DELFOS (PDC2021-121243-I00) and SREC (PID2021-123824OB-I00) projects, MICIN/AEI/10.13039/501100011033 and co-financed with ERDF and the European Union Next Generation EU/PRTR.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Iris Reinhartz-Berger, Jelena Zdravkovic, and Asif Gill.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Reyes Román, J.F., León Palacio, A., García Simón, A. et al. Integration of clinical and genomic data to enhance precision medicine: a case of study applied to the retina-macula. Softw Syst Model 22, 159–174 (2023). https://doi.org/10.1007/s10270-022-01039-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10270-022-01039-4