iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/s10270-022-01039-4
Integration of clinical and genomic data to enhance precision medicine: a case of study applied to the retina-macula | Software and Systems Modeling Skip to main content

Advertisement

Log in

Integration of clinical and genomic data to enhance precision medicine: a case of study applied to the retina-macula

  • Special Section Paper
  • Published:
Software and Systems Modeling Aims and scope Submit manuscript

Abstract

Age-related macular degeneration is a complex, multifactorial, and neurodegenerative disease that is the third cause of blindness after cataracts and glaucoma. To date, there are no effective remedies available for treating the disease. Therefore, the main goal of the scientific community is to uncover the underlying role that both genetics and environmental factors play in the development of the disease. Nevertheless, the complexity of the domain, the heterogeneity of the information, and the massive amounts of existing data hinder the daily work of clinical experts to provide an accurate diagnosis and treatment. In this work, we present how clinicians can benefit from the development of ontologically well-grounded information systems to support the management of both clinical and genomic data. First, we summarize the results obtained in a previous work that cover the clinical perspective using an information system called G-MAC, that has been specially developed for the management of clinical data. Then, we present the results of an exhaustive study of the genetic factors of age-related macular degeneration by using an information system that was developed with the aim of enhancing the management of complex genomic data. Finally, we state how the connection of both perspectives through the use of conceptual models can benefit clinicians and patients through a more accurate Medicine of Precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://www.savesightinstitute.org.au/research-units/save-sight-registries/fight-retinal-blindness/.

  2. G-MAC, https://genomics-hub.pros.dsic.upv.es:4000/#/login.

  3. Angular-CLI (command line interpreter), https://angular.io/cli

  4. https://www.w3schools.in/mvc-architecture/

  5. http://www.pros.webs.upv.es/

  6. https://www.ncbi.nlm.nih.gov/clinvar/

  7. http://www.ensembl.org/index.html

  8. https://www.lovd.nl/

  9. https://www.ncbi.nlm.nih.gov/snp/

  10. https://pubmed.ncbi.nlm.nih.gov/

  11. https://www.ebi.ac.uk/gwas/

  12. https://vrain.upv.es/

References

  1. National Eye Institute: Age-related macular degeneration (2021) https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/age-related-macular-degeneration

  2. de Jong, E.K., Geerlings, M.J., den Hollander, A.I.: Age-related macular degeneration. Genet. Genom. Eye Dis. 1, 155–180 (2020). https://doi.org/10.1016/B978-0-12-816222-4.00010-1

    Article  Google Scholar 

  3. Katta, S., Kaur, I., Chakrabarti, S.: The molecular genetic basis of age-related macular degeneration: an overview. J. Genet. 88(4), 425–449 (2009). https://doi.org/10.1007/s12041-009-0064-4

    Article  Google Scholar 

  4. Resnikoff, S., Pascolini, D., Etya’Ale, D., Kocur, I., Pararajasegaram, R., Pokharel, G.P., Mariotti, S.P.: Global data on visual impairment in the year 2002. Bull. World Health Organ. 82, 844–851 (2004)

    Google Scholar 

  5. Velez-Montoya, R., Oliver, S.C., Olson, J.L., Fine, S.L., Quiroz-Mercado, H., Mandava, N.: Current knowledge and trends in age-related macular degeneration: genetics, epidemiology, and prevention. Retina 34(3), 423–441 (2014). https://doi.org/10.1097/IAE.0000000000000036

    Article  Google Scholar 

  6. Loewenstein, A.: The significance of early detection of age-related macular degeneration: Richard and Hinda Rosenthal foundation lecture, the macula society 29th annual meeting. Retina 27(7), 873–878 (2007). https://doi.org/10.1097/IAE.0b013e318050d2ec

    Article  Google Scholar 

  7. Boyer, D.S., Antoszyk, A.N., Awh, C.C., Bhisitkul, R.B., Shapiro, H., Acharya, N.R., MARINA Study Group: Subgroup analysis of the MARINA study of ranibizumab in neovascular age-related macular degeneration. Ophthalmology 114(2), 246–252 (2007). https://doi.org/10.1016/j.ophtha.2006.10.045

    Article  Google Scholar 

  8. Olivé, A.: Conceptual Modeling of Information Systems. Springer Science and Business Media, Berlin (2007). https://doi.org/10.1007/978-3-540-39390-0

  9. Reyes Román, J. F., Marco-Palomares, A., García S. A., Pastor, O.: A model-based application for the effective and efficient management of data associated with retina-macula pathology. In: Enterprise, Business-Process and Information Systems Modeling, pp. 366–379. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79186-5_24

  10. León, A., Pastor, Ó.: Enhancing precision medicine: a big data-driven approach for the management of genomic data. Big Data Res. 26, 100253 (2021). https://doi.org/10.1016/j.bdr.2021.100253

    Article  Google Scholar 

  11. Reyes Román, J. F. (2018). Diseño y desarrollo de un sistema de información genómica basado en un modelo conceptual holístico del genoma humano (Doctoral dissertation, Universitat Politècnica de València). https://doi.org/10.4995/Thesis/10251/99565

  12. García, A., León Palacio, A., Reyes Román, J.F., Casamayor, J.C., Pastor, O.: Towards the understanding of the human genome: a holistic conceptual modeling approach. IEEE Access 8, 197111–197123 (2020). https://doi.org/10.1109/ACCESS.2020.3034793

    Article  Google Scholar 

  13. Aguilera, D., Gómez, C., Olivé, A.: Enforcement of conceptual schema quality issues in current integrated development environments. In: International Conference on Advanced Information Systems Engineering, pp. 626–640. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38709-8_40

  14. Delcambre, L.M., Liddle, S.W., Pastor, O., Storey, V.C.: A reference framework for conceptual modeling. In: International Conference on Conceptual Modeling, pp. 27–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_4

  15. Paton, N.W., Khan, S.A., Hayes, A., Moussouni, F., Brass, A., Eilbeck, K., Oliver, S.G.: Conceptual modelling of genomic information. Bioinformatics 16(6), 548–557 (2000). https://doi.org/10.1093/bioinformatics/16.6.548

    Article  Google Scholar 

  16. Bornberg-Bauer, E., Paton, N.W.: Conceptual data modelling for bioinformatics. Brief. Bioinform. 3(2), 166–180 (2002). https://doi.org/10.1093/bib/3.2.166

    Article  Google Scholar 

  17. Ram, S., Wei, W.: Modeling the semantics of 3D protein structures. In: International Conference on Conceptual Modeling, pp. 696–708. Springer, Berlin, Heidelberg (2004. https://doi.org/10.1007/978-3-540-30464-7_52

  18. Eilbeck, K., Lewis, S.E., Mungall, C.J., et al.: The sequence ontology: a tool for the unification of genome annotations. Genome Biol. 6, R44 (2005). https://doi.org/10.1186/gb-2005-6-5-r44

    Article  Google Scholar 

  19. Vihinen, M.: Variation ontology for annotation of variation effects and mechanisms. Genome Res. 24(2), 356–364 (2014). https://doi.org/10.1101/gr.157495.113

    Article  Google Scholar 

  20. Ashburner, M., Ball, C., Blake, J., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000). https://doi.org/10.1038/75556

    Article  Google Scholar 

  21. Pastor, Ó., León, A., Reyes Román, J.F., García, A.S., Casamayor, J.C.: Using conceptual modeling to improve genome data management. Brief. Bioinform. 22(1), 45–54 (2021). https://doi.org/10.1093/bib/bbaa100

    Article  Google Scholar 

  22. Burriel Coll, V. (2017). Diseño y desarrollo de un sistema de información para la gestión de información sobre Cáncer de mama (Doctoral dissertation, Universitat Politècnica de València). https://doi.org/10.4995/Thesis/10251/86158

  23. Arevshatyan, S., Reyes Román, J.F., Burriel, V., Cañete, A., Castel, V., Pastor, Ó.: Integration and analysis of clinical and genomic data of neuroblastoma applying conceptual modeling. (2019)

  24. Wieringa, R.: Design Science Methodology for Information Systems and Software Engineering, pp. 1–332. Springer-Verlag, Berlin Heidelberg (2014). https://doi.org/10.1007/978-3-662-43839-8

    Book  Google Scholar 

  25. Marco Palomares, A.: Desarrollo dirigido por modelos para el análisis y gestión de los datos asociados a la patología macular. (Master Thesis, Universitat Politècnica de València) (2020). http://hdl.handle.net/10251/151886

  26. Jenny Preece, H.S., Rogers, Y.: Interaction design: beyond human-computer interaction. (2015)

  27. Seddon, J.M., Reynolds, R., Maller, J., Fagerness, J.A., Daly, M.J., Rosner, B.: Prediction model for prevalence and incidence of advanced age-related macular degeneration based on genetic, demographic, and environmental variables. Investig. Ophthalmol. Vis. Sci. 50(5), 2044–2053 (2009). https://doi.org/10.1167/iovs.08-3064

    Article  Google Scholar 

  28. Fritsche, L.G., Fariss, R.N., Stambolian, D., Abecasis, G.R., Curcio, C.A., Swaroop, A.: Age-related macular degeneration: genetics and biology coming together. Annu. Rev. Genom. Hum. Genet. 15, 151–171 (2014). https://doi.org/10.1146/annurev-genom-090413-025610

    Article  Google Scholar 

  29. Nurk, S., Koren, S., Rhie, A., Rautiainen, M., et al.: The complete sequence of a human genome. Science 376(6588), 44–53 (2022). https://doi.org/10.1126/science.abj6987

    Article  Google Scholar 

  30. Bonnans, C., Chou, J., Werb, Z.: Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15(12), 786–801 (2014). https://doi.org/10.1038/nrm3904

    Article  Google Scholar 

  31. Folkman, J.: Angiogenesis. Annu. Rev. Med. 57, 1–18 (2006). https://doi.org/10.1146/annurev.med.57.121304.131306

    Article  Google Scholar 

  32. Beatty, S., Koh, H.H., Phil, M., Henson, D., Boulton, M.: The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv. Ophthalmol. 45(2), 115–134 (2000). https://doi.org/10.1016/S0039-6257(00)00140-5

    Article  Google Scholar 

  33. Vavvas, D.G., Small, K.W., Awh, C.C., Zanke, B.W., Tibshirani, R.J., Kustra, R.: CFH and ARMS2 genetic risk determines progression to neovascular age-related macular degeneration after antioxidant and zinc supplementation. Proc. Natl. Acad. Sci. 115(4), E696–E704 (2018). https://doi.org/10.1073/pnas.1718059115

    Article  Google Scholar 

  34. Seddon, J.M., Silver, R.E., Rosner, B.: Response to AREDS supplements according to genetic factors: survival analysis approach using the eye as the unit of analysis. Br. J. Ophthalmol. 100(12), 1731–1737 (2016). https://doi.org/10.1136/bjophthalmol-2016-308624

    Article  Google Scholar 

  35. Brown, D.M., Michels, M., Kaiser, P.K., Heier, J.S., Sy, J.P., Ianchulev, T.: Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology 116(1), 57–65 (2009). https://doi.org/10.1016/j.ophtha.2008.10.018

    Article  Google Scholar 

  36. Tsilimbaris, M.K., López-Gálvez, M.I., Gallego-Pinazo, R., Margaron, P., Lambrou, G.N.: Epidemiological and clinical baseline characteristics as predictive biomarkers of response to anti-VEGF treatment in patients with neovascular AMD. J. Ophthalmol. (2016). https://doi.org/10.1155/2016/4367631

    Article  Google Scholar 

  37. Lorés-Motta, L., de Jong, E.K., den Hollander, A.I.: Exploring the use of molecular biomarkers for precision medicine in age-related macular degeneration. Mol. Diagn. Ther. 22(3), 315–343 (2018). https://doi.org/10.1007/s40291-018-0332-1

  38. García Simón, A., Costa Sánchez, M., Pastor, O.: Characterization and treatment of the temporal dimension of genomic variations: a conceptual model-based approach. In: International Conference on Conceptual Modeling, pp. 104–113. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88358-4_9

  39. Reyes Román, J.F., Pastor, O., Casamayor, J.C., Valverde, F.: Applying conceptual modeling to better understand the human genome. In: International Conference on Conceptual Modeling, pp. 404–412. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_31

  40. García, A., León Palacio, A., Reyes Román, J. F., Casamayor, J. C., Pastor, O.: A conceptual model-based approach to improve the representation and management of omics data in precision medicine. IEEE Access 9, 154071–154085 (2021). https://doi.org/10.1109/ACCESS.2021.3128757

  41. León Palacio, A., Pastor, Ó., Casamayor Ródenas, J.C.: A method to identify relevant genome data: conceptual modeling for the medicine of precision. In: International Conference on Conceptual Modeling, pp. 597–609. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_44

  42. León Palacio, A., Pastor, Ó.: Smart data for genomic information systems: the SILE method. Complex Syst. Inform. Model. Q. 17, 1–23 (2018). https://doi.org/10.7250/csimq.2018-17.01

    Article  Google Scholar 

  43. Plazzotta, F., Luna, D., Bernaldo, González, de Quirós, F.: Sistemas de información en salud: integrando datos clínicos en diferentes escenarios y usuarios. Rev. Peru. Med. Exp. Salud Públ. 32(2), 343–351 (2015)

  44. Instituto de Microcirugía Ocular: DMAE: Síntomas y tratamientos | IMO. (2018) https://www.imo.es/es/dmae

  45. Pardo, I.C., Varona, D.G., de Miranda Remedios, D.I.: Degeneración macular relacionada con la edad. Arch. Méd. Camagüey 12(2), 1–22 (2008)

  46. Ruiz-Moreno, J.M., Arias-Barquet, L., Armadá-Maresca, F., Boixadera-Espax, A., García-Layana, A., GÚIAS-DE PRÁDE PRÁCTICA CLÍNICA DE LA SERV:Tratamiento de la Degeneración Macular Asociada a la Edad (DMAE) Exudativa y Atrófica”. (Segunda revisión) Arch. Soc. Española Oftalmol. 84(7),333–344 (2009)

  47. García, A., Reyes Román, J.F., Casamayor, J.C., Pastor, O.: Towards an effective and efficient management of genome data: an information systems engineering perspective. In: International Conference on Advanced Information Systems Engineering, pp. 99–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21297-1_9

  48. Baird, P.N., Hageman, G.S., Guymer, R.H.: New era for personalized medicine: the diagnosis and management of age-related macular degeneration. Clin. Exp. Ophthalmol. 37(8), 814–821 (2009). https://doi.org/10.1111/j.1442-9071.2009.02136.x

    Article  Google Scholar 

  49. Senra, H., Macedo, A.F., Nunes, N., Balaskas, K., Aslam, T., Costa, E.: Psychological and psychosocial interventions for depression and anxiety in patients with age-related macular degeneration: a systematic review. Am. J. Geriatr. Psychiatry 27(8), 755–773 (2019). https://doi.org/10.1016/j.jagp.2019.03.001

    Article  Google Scholar 

  50. Mehta, S.: Age-related macular degeneration. Prim. Care Clin. Off. Pract. (2015). https://doi.org/10.1016/j.pop.2015.05.009

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the members of the PROS Research Center Genome group for the fruitful discussions regarding the application of CM in the medical field. This work was supported by the Valencian Innovation Agency and Innovation through the OGMIOS project (INNEST/2021/57), the Preparatory Action - UPV-FISABIO (A36-G-MAC, 2019), the Generalitat Valenciana through the CoMoDiD project (CIPROM/2021/023), and the Spanish State Research Agency through the DELFOS (PDC2021-121243-I00) and SREC (PID2021-123824OB-I00) projects, MICIN/AEI/10.13039/501100011033 and co-financed with ERDF and the European Union Next Generation EU/PRTR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Fabián Reyes Román.

Additional information

Communicated by Iris Reinhartz-Berger, Jelena Zdravkovic, and Asif Gill.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes Román, J.F., León Palacio, A., García Simón, A. et al. Integration of clinical and genomic data to enhance precision medicine: a case of study applied to the retina-macula. Softw Syst Model 22, 159–174 (2023). https://doi.org/10.1007/s10270-022-01039-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10270-022-01039-4

Keywords

Navigation