Abstract
Residual-based a posteriori error estimates were derived within one unifying framework for lowest-order conforming, nonconforming, and mixed finite element schemes in Carstensen [Numer Math 100:617–637, 2005]. Therein, the key assumption is that the conforming first-order finite element space \(V_h^c\) annulates the linear and bounded residual ℓ written \(V_h^c \subseteq {\rm ker} \ell\) . That excludes particular nonconforming finite element methods (NCFEMs) on parallelograms in that \(V_h^c \not\subset {\rm ker} \ell\) . The present paper generalises the aforementioned theory to more general situations to deduce new a posteriori error estimates, also for mortar and discontinuous Galerkin methods. The key assumption is the existence of some bounded linear operator \(\Pi: V_h^c \rightarrow V_h^{nc}\) with some elementary properties. It is conjectured that the more general hypothesis (H1)–(H3) can be established for all known NCFEMs. Applications on various nonstandard finite element schemes for the Laplace, Stokes, and Navier–Lamé equations illustrate the presented unifying theory of a posteriori error control for NCFEM.
Similar content being viewed by others
References
Ainsworth M. and Oden J.T. (2000). A posteriori error estimation in finite element analysis. Wiley, New York
Ainsworth M. (2005). A posteriori error estimation for non-conforming quadrilateral finite elements. Int. J. Numer. Anal. Model 2: 1–18
Arnold D.N. (1982). An interior penalty finite element method with discontinuous elements. IAM J. Numer. Anal. 19: 742–760
Arnold D.N., Brezzi F., Cockburn B. and Marini D. (2000). Discontinuous Galerkin methods for elliptic problems. In: Cockburn, B., Karniadakis, G., and Shu, C.W. (eds) Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11., pp 89–101. Springer, New York
Baker G. (1977). Finite element methods for elliptic equations using nonconforming elements. Math. Comp. 31: 45–59
Baker G.A., Jureidini W.N. and Karakashian O.A. (1990). Piecewise solenoidal vector fields and the Stokes problem. SIAM J. Numer. Anal. 27: 1466–1485
Becker R., Hansbo P. and Larson M. (2003). Energy norm a posteriori error estimation for. discontinuous Galerkin methods. Comput. Methods Appl. Mech. Engrg. 192: 723–733
Bernardi C. and Girault V. (1998). A local regularisation operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35: 1893–1916
Bernardi C. and Hecht F. (2002). Error indicators for the mortar finite element discretization of the Laplace equation. Math. Comp. 71: 1371–1403
Bernardi C., Maday Y. and Patera A.T. (1993). Domain decomposition by the mortar element method. In: Kaper, H. (eds) Asymptotic and Numerical Methods for Partial Differential Equations and Their Applications., pp 269–286. Reidel, Dordrecht
Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: the mortar element method. In: Nonlinear Partial Differential Equations and Their Applications, Paris, pp. 13–51 (1994)
Bernardi, C., Owens, R.G. Valenciano, J.: An error indicator for mortar element solutions to the Stokes problem. In: Internal Report 99030, Laboratoire d’Analyse Numrique, Université Pierre et Marie Curie, Paris (1999)
Braess D. (1997). Finite Elements. Cambridge University Press, London
Braess D., Carstensen C. and Reddy B.D. (2004). Uniform convergence and a posteriori error estimators for the enhanced strain finite element method. Numer. Math. 96: 461–479
Brenner S.C. and Scott L.R. (2002). The Mathematical Theory of Finite Element Methods. Springer, Berlin
Brenner S.C. and Sung L.Y. (1992). Linear finite element methods for planar linear elasticity. Math. Comp. 59: 321–338
Brezzi F. and Fortin M. (1991). Mixed and Hybrid Finite Element Methods. Springer, Berlin
Bustinza R. and Gabriel N. (2005). Gatica and Bernardo Cockburn. An a posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems. J. Sci. Comput. 22: 147–185
Cai Z., Ye X. and Douglas J. Jr. (1999). A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier–Stokes equations. CaLcoLo 36: 215–232
Carstensen C. (2005). A unifying theory of a posteriori finite element error control. Numer. Math. 100: 617–637
Carstensen C. (1999). Quasi-interpolation and a posteriori error analysis in finite element methods. M2AN Math. Model. Numer. Anal. 33: 1187–1202
Carstensen C. and Bartels S. (2002). Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming and mixed FEM. Math. Comp. 71: 945–969
Carstensen C., Bartels S. and Jansche S. (2002). A posteriori error estimates for nonconforming finite element methods. Numer. Math. 92: 233–256
Carstensen C. and Dolzmann G. (1998). A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81: 187–209
Carstensen, C., Hu, J., Orlando, A.: Framework for the a posteriori error analysis of nonconforming finite elements. Preprint (2005-11), Department of Mathematics, Humboldt University of Berlin (2005). SIAM J. Numer. Anal. 45, 68–82 (2007)
Creusé E., Kunert G. and Nicaise S. (2004). A posteriori error estimation for the Stokes problem: anisotropic and isotropic discretications. M3AS 14: 1–48
Crouzeix M. and Raviart P.-A. (1973). Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7: 33–76
Dari E., Duran R. and Padra C. (1995). Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp. 64: 1017–1033
Dari E., Duran R., Padra C. and Vampa V. (1996). A posteriori error estimators for nonconforming finite element methods. Math. Model. Numer. Anal. 30: 385–400
Douglas J. Jr., Dupont T. (1976) Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Lectures Notes in Physics, vol. 58. Springer, Berlin
Santos J.E., Sheen D., Ye X. and Douglas J. Jr. (1999). Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. Math. Model. Numer. Anal. 33: 747–770
Falk R.S. (1991). Nonconforming finite element methods for the equations of linear elasticity. Math. Comp. 57: 529–550
Grajewski, M., Hron, J., Turek, S.: Numerical analysis for a new non-conforming linear finite element on quadrilaterals. J. Comput. Appl. Math. (in press)
Grajewski, M., Hron, J., Turek, S.: Dual Weighted a posteriori error estimation for a new nonconforming linear finite element on quadrilaterals. www.mathematik.uni-dortmund.de/lsiii/static/showpdffile_GrajewskiHronTurek2004.pdf
Girault V. and Raviart P.-A. (1986). Finite Element Methods for Navier–Stokes Equations. Springer, Berlin
Han H.-D. (1984). Nonconforming elements in the mixed finite element method. J. Comp. Math. 2: 223–233
Houston P., Schotzau D. and Wihler T.P. (2005). Energy norm shape a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem. J. Sci. Comput. 22: 347–370
Houston P., Schotzau D. and Wihler T.P. (2006). An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity. Comp. Methods Appl. Mech. Engrg. 195: 224–3246
Houston, P., Schotzau, D., Wihler, T.P.: Energy norm a posteriori error estimation of hp- adaptive discontinuous Galerkin methods for elliptic problems. M3AS (to appear)
Hu J., Man H.-Y. and Shi Z.-C. (2005). Constrained nonconforming rotated Q 1 element for Stokes flow and planar elasticity. Math. Numer. Sin. (in Chinese) 27: 311–324
Hu J. and Shi Z.-C. (2005). Constrained quadrilateral nonconforming rotated Q 1-element. J. Comp. Math. 23: 561–586
Kanschat G. and Suttmeier F.-T. (1999). A posteriori error estimates for nonconforming finite element schemes. Calcolo 36: 129–141
Karakashian O.A. and Jureidini W.N. (1998). A nonconforming finite element method for the stationary Navier–Stokes equations. SIAM J. Numer. Anal. 35: 93–120
Karakashian O.A. and Pascal F. (2003). A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41: 2374–2399
Kouhia R. and Stenberg R. (1995). A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow. Comput. Methods Appl. Mech. Engrg. 124: 195–212
Lee C.O., Lee J. and Sheen D.W. (2003). A locking-free nonconforming finite element method for planar linear elasticity. Adv. Comput. Math. 19: 277–291
Lin Q., Tobiska L. and Zhou A. (2005). On the superconvergence of nonconforming low order finite elements applied to the Poisson equation. IMA. J. Numer. Anal. 25: 160–181
Ming, P.-B.: Nonconforming finite element vs locking problem. Doctorate Dissertation (in Chinese), Institute of Computational Mathematics, Chinese Academy of Science (1999)
Park C. and Sheen D. (2003). P1-nonconforming quadrilateral finite element methods for second-order elliptic problems. SIAM J. Numer. Anal. 41: 624–640
Rannacher R. and Turek S. (1992). Simple nonconforming quadrilateral Stokes element. Numer. Methods PDE 8: 97–111
Riviere B. and Wheeler M.F. (2003). A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems. Comput. Math. Appl. 46: 141–163
Riviere B. and Wheeler M.F. (2003). A posteriori error estimates and mesh adaptation strategy for discontinuous Galerkin methods applied to diffusion problems. Comput. Math. Appl. 46: 141–163
Simo J.C. and Rifai M.S. (1990). A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Methods Engrg. 29: 1595–1638
Shi Z.-C. (1984). A convergence condition for quadrilateral Wilson element. Numer. Math. 44: 349–361
Verfürth R. (1996). A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley–Teubner, Stuttgart
Wang L.-H. and Qi H. (2002). On locking-free finite element schemes for the pure displacement boundary value problem in the planar elasticity. Math. Numer. Sin. (in Chinese) 24: 243–256
Wheeler M.F. (1978). An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15: 152–161
Wihler T.P. (2006). Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems. Math. Comp. 75: 1087–1102
Wilson E.L., Taylor R.L., Doherty W. and Ghaboussi J. (1973). Incompatible displacement models. In: Fenves, S.J., Perrone, N., Robinson, A.R., and Schnobrich, W.C. (eds) Numerical and Computer Methods in Structural Mechanics., pp 43–57. Academic, New York
Wohlmuth B. (1999). A residual based error estimator for mortar finite element discretizations. Numer. Math. 84: 143–171
Zhang Z.-M. (1997). Analysis of some quadrilateral nonconforming elements for incompressible elasticity. SIAM J. Numer. Anal. 34: 640–663
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by DFG Research Center MATHEON “Mathematics for key technologies” in Berlin and the German Indian Project DST-DAAD (PPP-05). J. Hu was partially supported by National Science Foundation of China under Grant No.10601003.
Rights and permissions
About this article
Cite this article
Carstensen, C., Hu, J. A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107, 473–502 (2007). https://doi.org/10.1007/s00211-007-0068-z
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-007-0068-z