Abstract
We see a systematic set of cut-free axiomatisations for all the basic normal modal logics formed by some combination the axioms d, t, b, 4, 5. They employ a form of deep inference but otherwise stay very close to Gentzen’s sequent calculus, in particular they enjoy a subformula property in the literal sense. No semantic notions are used inside the proof systems, in particular there is no use of labels. All their rules are invertible and the rules cut, weakening and contraction are admissible. All systems admit a straightforward terminating proof search procedure as well as a syntactic cut elimination procedure.
Similar content being viewed by others
References
Avron A.: The method of hypersequents in the proof theory of propositional non-classical logics. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds) Logic: From Foundations to Applications. Proceedings of the Logic Colloquium, Keele, UK, 1993, pp. 1–32. Oxford University Press, New York (1996)
Belnap N.D. Jr: Display logic. J. Philos. Log. 11, 375–417 (1982)
Brünnler, K.: Deep Inference and Symmetry in Classical Proofs. PhD thesis, Technische Universität Dresden (2003)
Brünnler K.: Deep sequent systems for modal logic. In: Governatori, G., Hodkinson, I., Venema, Y. (eds) Advances in Modal Logic, vol. 6, pp. 107–119. College Publications, London (2006)
Brünnler K., Tiu A.F.: A local system for classical logic. In: Nieuwenhuis, R., Voronkov, A. (eds) LPAR 2001. Lecture Notes in Artificial Intelligence, vol. 2250, pp. 347–361. Springer, New York (2001)
Bull R.A.: Cut elimination for propositional dynamic logic without *. Math. Log. Grundlagen Math. 38, 85–100 (1992)
Garson, J.: Modal logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Spring (2008). http://plato.stanford.edu/archives/spr2008/entries/logic-modal/
Guglielmi A.: A system of interaction and structure. ACM Trans. Comput. Log. 8(1), 1–64 (2007)
Guglielmi A., Straßburger L.: Non-commutativity and MELL in the calculus of structures. In: Fribourg, L. (eds) CSL 2001. Lecture Notes in Computer Science, vol. 2142, pp. 54–68. Springer, New York (2001)
Hein R., Stewart C.: Purity through unravelling. In: Bruscoli, P., Lamarche, F., Stewart, C. (eds) Structures and Deduction, pp. 126–143. Technische Universität Dresden, Dresden (2005)
Kashima R.: Cut-free sequent calculi for some tense logics. Stud. Log. 53, 119–135 (1994)
Martini S., Masini A.: A computational interpretation of modal proofs. In: Wansing, H. (eds) Proof Theory of Modal Logic. Applied Logic Series, vol. 2, pp. 213–241. Kluwer, Dordrecht (1996)
Negri S.: Proof analysis in modal logic. J. Philos. Log. 34(5–6), 507–544 (2005)
Poggiolesi F.: The tree-hypersequent method for modal propositional logic. In: Makinson, D., Malinowski, J., Wansing, H. (eds) Towards Mathematical Philosophy, Trends in Logic, pp. 9–30. Springer, New York (2009)
Sato M.: A study of Kripke-type models for some modal logics by Gentzen’s sequential method. Publ. Res. Inst. Math. Sci. Kyoto Univ. 13, 381–468 (1977)
Stewart C., Stouppa P.: A systematic proof theory for several modal logics. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds) Advances in Modal Logic, vol. 5, pp. 309–333. King’s College Publications, London (2005)
Stouppa P.: A deep inference system for the modal logic S5. Stud. Log. 85(2), 199–214 (2007)
Straßburger, L.: Linear Logic and Noncommutativity in the Calculus of Structures. PhD thesis, Technische Universität Dresden (2003)
Troelstra A.S., Schwichtenberg H.: Basic Proof Theory. Cambridge University Press, London (1996)
Wansing H.: Displaying Modal Logic. Trends in Logic Series, vol. 3. Kluwer, Dordrecht (1998)
Wansing H.: Sequent systems for modal logics. In: Gabbay, D., Guenther, F. (eds) Handbook of Philosophical Logic, vol. 8, 2nd edn, pp. 61–145. Kluwer, Dordrecht (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Brünnler, K. Deep sequent systems for modal logic. Arch. Math. Logic 48, 551–577 (2009). https://doi.org/10.1007/s00153-009-0137-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-009-0137-3