Abstract
We discuss the role of the general invariance concept in object recognition, and review the classical and recent literature on projective invariance. Invariants help solve major problems of object recognition. For instance, different images of the same object often differ from each other, because of the different viewpoint from which they were obtained. To match the two images, common methods thus need to find the correct viewpoint, a difficult problem that can involve search in a high dimensional space of all possible points of view and/or finding point correspondences. Geometric invariants are shape descriptors, computed from the geometry of the shape, that remain unchanged under geometric transformations such as changing the viewpoint. Thus they can be matched without search. Deformations of objects are another important class of geometric changes for which invariance is useful.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abhyankar, S.S., 1990.Algebraic Geometry for Scientists and Engineers. American Mathematical Society: Providence, RI.
Arbter, K., Snyder, W.E., Burkhardt, H., and Hirzinger, G., 1990. Applications of affine-invariant Fourier descriptors to recognition of 3-D objects,IEEE Trans. Patt. Anal. Mach. Intell. 12: 640–647.
Ballard, D., and Brown, C.M., 1982.Computer 11263on. Prentice Hall: Englewood Cliffs, NJ.
Barrett, E.B., Payton, P., Haag, N., and Brill, M., 1991. General methods for determining projective invariants in imagery,Comput. Vis. Graph. Image Process. 53: 45–65.
Barrett, E.B., Brill, E.H., Haag, N.N., and Payton, P.M., 1992. Invariant linear methods in photogrammetry and model-matching, In J.L. Mundy and A. Zisserman, 1992.
Besl, P.J., and Jain, R.C. 1985. Three-dimensional object recognition,ACM Computing Surveys 17: 75–145.
Bhaskaracharya, 1150.Beejaganit, Ujjain.
Binford, T.O., 1981. Inferring surfaces from images,Artificial Intelligence 17: 205–244.
Bookstein, F.L., 1979. Fitting conic sections to scattered data,Comput. Graph. Image Process. 9: 56–71.
Brill, M.H., Barrett, E.B., and Payton, P.M., 1992. Projective invariants in two and three dimensions. In J.L. Mundy and A. Zisserman, 1992.
Brown, C.M., 1991. Numerical evaluation of differential and semidifferential invariants, Tech. Rept., University of Rochester Computer Science Department.
Bruckstein, A., Holt, J., Netravali, A.N., and Richardson, T.J., 1991. Invariant signatures for planar shape recognition under partial occlusion, AT&T Tech. Rept., October.
Burkhardt, H., Fenske, A., and Schulz-Mirbach, H., 1992. Invariants for the recognition of planar contour and gray-scale images, ESPRIT Workshop: Invariants for Recognition,Proc. 2nd Europ. Conf. Comput. Vis., Italy.
Burns, J.B., Weiss, R., and Riseman, E.M., 1990. View variation of point set and line segment features,Proc. DARPA Image Understanding Workshop, Pittsburgh, pp. 650–659.
Carlsson, S., 1992. Projective invariant decomposition of planar shapes. In J.L. Mundy and A. Zisserman, 1992.
Cartan, E., 1955. La théorie des groupes continus et la géometrie,Oeuvres Complétes, III/2, 1727–1861, Gauthier-Villars, Paris.
Chang, S., Davis, L.S., Dunn, S.M., Eklundh, J.-O., and Rosenfeld, A., 1987. Texture discrimination by projective invariants,Patt. Recog. Letts. 5: 337–342.
Cyganski, D., and Orr, J., 1985. Applications of tensor theory to object recognition and orientation determination,IEEE Trans. Patt. Anal. Mach. Intell. 7: 662–673.
Duda, R.O., and Hart, P.E., 1973.Pattern Recognition and Scene Analysis. Wiley: New York.
Faugeras, O.D., and Papadopoulo, T., 1992. Disambiguating stereo matches with spatio-temporal surfaces. In J.L. Mundy and Z. Zisserman, 1992.
Forsyth, D., Mundy, J.L., Zisserman, A., and Brown, C.M., 1990. Projectively invariant representations using implicit algebraic curves,Image Vis. Comput. 8: 130–136.
Forsyth, D., Mundy, J.L., Zisserman, A., Coelho, C., Heller, C., Heller, A., and Rothwell, C., 1991. Invariant descriptors for 3-D object recognition and pose,IEEE Trans. Patt. Anal. Mach. Intell. 13: 971–991.
Fubini and Čech, 1927.Geometria Proiettiva Differenziale. Zanichelli: Bologna.
Gordan, P. 1885.Vorlesungen Über Invariantentheorie. Leipzig.
Grimson, W.E.L., and Lozano-Pérez, T., 1987. Localizing overlapping parts by searching the interpretation tree,IEEE Trans. Patt. Anal. Mach. Intell. 9: 469–482.
Grace, J.H., and Young, A., 1903.The Algebra of Invariants. Chelsea: New York.
Guggenheimer, H., 1963.Differential Geometry. Dover: New York.
Halphen, M., 1880. Sur les invariants différentiels des courbes gauches,J. Ec. Polyt. 28: 1.
Hopcroft, J.P., Huttenlocher, D.P., and Wayner, P.C., 1992. Affine invariants for model-based recognition. In J.L. Mundy and A. Zisserman, 1992.
Hilbert, D., 1890. Über die Theorie der algebraischen Formen,Mathematische Annalen 36: 473–534.
Hilbert, D., 1893. Über die vollen Invariantensysteme,Mathematische Annalen 42: 313–373.
Kanatani, K., 1990.Group Theoretical Methods in Image Understanding. Springer: Berlin.
Kapur, D., and Mundy, J.L., 1992. Fitting affine invariants to curves. In J.L. Mundy and A. Zisserman, 1992.
Klein, F., 1926.Entwicklung der Mathematik. Berlin.
Koenderink, J.J., and Van Doorn, A.J., 1991. Affine invariants from motion,J. Opt. Soc. Amer. A, 8: 377–385.
Kriegman, D.J., and Ponce, J. 1990. On recognizing and positioning of curved 3-D objects from image contours,IEEE Trans. Patt. Anal. Mach. Intell., 12: 1127–1137.
Lamdan, Y., Schwartz, J.T., and Wolfson, H.J., 1988. Object recognition by affine invariant matching,Proc. Conf. Comput. Vis. Patt. Recog., Ann Arbor, pp. 335–344.
Lagrange, J.L., 1773, Berlin Memoires, p. 265. Lane, E.P., 1932.Projective Differential Geometry of Curves and Surfaces. University of Chicago Press.
Lane, E.P., 1942.A Treatise on Projective Differential Geometry. University of Chicago Press.
Lowe, D., 1985.Percentual Organization and Visual Recognition. Kluwer: Boston.
Maybank, S.J., 1992. The projection of two noncoplanar conics. In J.L. Mundy and A. Zisserman, 1992.
Meer, P., and Weiss, I., 1992. Smoothed differentiation filters for images,J. Visu. Commun. Image Represent. 3: 58–72.
Meer, P., and Weiss, I., 1992b. Point/line correspondence under 2D projective transformation,Proc. Conf. Comput. Vis. Patt. Recog., Urbana Champaign, IL, pp. 115–121.
Mohr, R. and Maurin, L., 1991. Relative positioning from geometric invariants,Proc. Conf. Comp. Vis. Patt. Recog., Maui, pp. 139–144.
Mumford, D., 1965.Geometric Invariant Theory. Springer: New York.
Mundy, J.L., and Zisserman, A., 1992. Introduction—Towards a new framework for 11263on. InGeometric Invariance in Machine 11263on. J.L. Mundy and A. Zisserman, eds., MIT Press: Cambridge, MA.
Mundy, J.L., Kapur, D., Maybank, S.J., and Quan, L., 1992a. Geometric interpretation of joint invariants. In J.L. Mundy and A. Zisserman, 1992.
Nagata, J., 1963. Complete reducibility of rational representations of a matric group,J. Math. Kyoto Univ. 3: 369–377.
Nielsen, L., and Sparr, G., 1991. Projective area invariants as an extension of the cross ratio,Comput. Vis. Graph. Image Process. 54: 145–159.
Olver, P.J., 1986.Application of Lie Groups to Differential Equations. Springer: New York.
Park, K., and Hall, E., 1987. Form recognition using moment invariants for three-dimensional perspective transformation,Proc. SPIE 726, Intelligent Robots and Computer 11263on, pp. 90–108.
Pizlo, Z., and Rosenfeld, A., 1991. Recognition of planar shapes from perspective images using contour-based invariants, Tech. Rept. 528, Center for Automation Research, University of Maryland.
Rivlin, E., and Weiss, I., 1992. Local invariants for recognition, University of Maryland CS-TR 2977.
Rivlin, E. and Weiss, I., 1993. Recognizing objects using deformation invariants, University of Maryland CS-TR 3041.
Salmon, G., 1879.Higher Plane Curves. Chelsea: New York.
Springer, C.E., 1964.Geometry and Analysis of Projective Spaces. Freeman: San Francisco.
Stevenson, R.L., and Delp, E.J., 1989. Invariant reconstruction of visual surfaces,Proc. IEEE Workshop on Interpretation of 3-D scenes, pp. 131–137.
Taubin, G., and Cooper, D.B., 1992. Object recognition based on moment (or algebraic) invariants. In J.L. Mundy and A. Zisserman, 1992.
Turnbull, H.W., 1928.Determinants, Matrices and Invariants. Blackie and Son: Glasgow.
Ullman, S., and Basri, R., 1991. Recognition by linear combination of models,IEEE Trans. Patt. Anal. Mach. Intell. 13: 992–1006.
Van Gool, L., Kempenaers, P., and Osterlinck, A., 1991. Recognition and semidifferential invariants,Proc. Conf. Comput. Vis. Patt. Recog., Maui, pp. 454–460.
Van Gool, L., Moons, T., Pauwels, E., and Oosterlinck, A., 1992. Semidifferential invariants. In J.L. Mundy and A. Zisserman, 1992.
Wayner, P.C., 1991. Efficiently using invariant theory for model-based matching,Proc. Conf. Comput. Vis. Patt. Recog., Maui, pp. 473–478.
Weinshall, D., 1990. Qualitative depth from stereo, with applications,Comput. Vis. Graph. Image Process. 49: 222–241.
Weiss, I., 1988. Projective invariants of shapes,Proc. DARPA Image Understanding Workshop, Cambridge, MA, pp. 1125–1134.
Weiss, I., 1991. High order differentiation filters that work, Tech. Rept. 545, Center for Automation Research, University of Maryland.
Weiss, I., 1992a. Noise resistant invariants of curves. In J.L. Mundy and A. Zisserman, 1992.
Weiss, I., 1992b. Local projective and affine invariants, Tech. Rept. 612, Center for Automation Research, University of Maryland.
Weyl, H., 1939.The Classical Groups. Princeton University Press.
Wilczynski, E.J., 1906.Projective Differential Geometry of Curves and Ruled Surfaces. Teubner: Leipzig.
Wilczynski, E.J., 1908. Projective differential geometry of curved surfaces (Second Memoir),Amer. Math. Soc. Trans. 79.
Zisserman, A., Forsyth, D.A., Mundy, J.L., and Rothwell, C.A., 1992. Recognizing general curved objects efficiently. In J.L. Mundy and A. Zisserman, 1992.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Weiss, I. Geometric invariants and object recognition. Int J Comput 11263on 10, 207–231 (1993). https://doi.org/10.1007/BF01539536
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF01539536