iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/BF01451741
Shapes, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space | International Journal of Computer Vision Skip to main content
Log in

Shapes, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We undertake to develop a general theory of two-dimensional shape by elucidating several principles which any such theory should meet. The principles are organized around two basic intuitions: first, if a boundary were changed only slightly, then, in general, its shape would change only slightly. This leads us to propose an operational theory of shape based on incremental contour deformations. The second intuition is that not all contours are shapes, but rather only those that can enclose “physical” material. A theory of contour deformation is derived from these principles, based on abstract conservation principles and Hamilton-Jacobi theory. These principles are based on the work of Sethian (1985a, c), the Osher-Sethian (1988), level set formulation the classical shock theory of Lax (1971; 1973), as well as curve evolution theory for a curve evolving as a function of the curvature and the relation to geometric smoothing of Gage-Hamilton-Grayson (1986; 1989). The result is a characterization of the computational elements of shape: deformations, parts, bends, and seeds, which show where to place the components of a shape. The theory unifies many of the diverse aspects of shapes, and leads to a space of shapes (the reaction/diffusion space), which places shapes within a neighborhood of “similar” ones. Such similarity relationships underlie descriptions suitable for recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alvarez, L., Guichard, F., Lions, P., and Morel, J. 1992. Axiomatisation et nouveaux operateurs de la morphologie mathematique.C. R. Acad. Sci. Paris, 315:265–268.

    Google Scholar 

  • Alvarez, L., Lions, P.-L., and Morel, J.-M. 1992. Image selective smoothing and edge detection by nonlinear diffusion: II.SIAM Journal of Numerical Analysis, 29(3):845–866.

    Google Scholar 

  • Angenent, S.B. 1988. The zero set of a solution of a parabolic equation.J. für die Reine und Angewandte Mathematik, 390:79–96.

    Google Scholar 

  • Arehart, A., Vincent, L., and Kimia, B.B. 1993. Mathematical morphology: The Hamilton-Jacobi connection. InFourth International Conference on Computer Vision (Germany, Berlin), Washington, D.C. Computer Society Press.

    Google Scholar 

  • Arnold, V. 1989.Mathematical Methods of Classical Mechanics, Second Edition. Springer-Verlag.

  • Asada, H. and Brady, M. 1983. The curvature primal sketch.IEEE PAMI, 8:2–14.

    Google Scholar 

  • Attneave, F. 1954. Some informational aspects of visual perception.Psych. Review, 61:183–193.

    Google Scholar 

  • Ballard, D. 1981. Strip trees: A hierarchical representation for curves.Comm. ACM, 24(5):310–321.

    Google Scholar 

  • Ballard, D.H. and Brown, C.M. 1982.Computer Vision. Prentice-Hall, New Jersey.

    Google Scholar 

  • Barles, G. 1985. Remarks on a flame propagation model. Technical Report No. 464, INRIA Rapports de Recherche.

  • Biederman, I. 1987. Recognition by components.Psych. Review, 94:115–147.

    Google Scholar 

  • Binford, T. 1981. Inferring surfaces from images.Artificial Intelligence, 17:205–244.

    Google Scholar 

  • Blake, A. and Zisserman, A. 1987.Visual Reconstruction. MIT Press, Cambridge, MA.

    Google Scholar 

  • Blum, H. 1973. Biological shape and visual science.J. Theor. Biol., 38:205–287.

    Google Scholar 

  • Bolles, R. and Cain, R. 1982. Recognizing and locating partially visible objects: The local-feature-focus method.International Journal of Robotics Research, 1(3):57–82.

    Google Scholar 

  • Brockett, R. and Maragos, P. 1992. Evolution equations for continuous-scale morphology. InProceedings of the IEEE Conference on Acoustics, Speech and Signal Processing, San Francisco, CA.

  • Brooks, R. 1981. Symbolic reasoning among 3-d models and 2-d images.Artificial Intelligence, 17:285–348.

    Google Scholar 

  • Bulthoff, H.H. and Edelman, S. 1992. Psychophysical support for a two-dimensional view interpolation theory of object recognition.Proc. Natl. Acad. Sci., USA, 89:60–64.

    Google Scholar 

  • Clarke, F. 1989.Optimization and Nonsmooth Analysis. Montreal:Les publications CRM.

    Google Scholar 

  • Conway, E. and Hopf, E. 1964. Hamilton's theory and generalized solutions of the Hamilton-Jacobi equation.Journal of Mathematics and Mechanics, 13(6):939–986.

    Google Scholar 

  • Crandall, M.G., Ishii, H., and Lions, P.-L. 1992. User's guide to viscosity solutions of second-order partial differential equations.Bulletin of the American Mathematical Society, 27(1):1–67.

    Google Scholar 

  • Crandall, M.G. and Lions, P.-L. 1983. Viscosity solutions of Hamilton-Jacobi equations.Trans. Amer. Math. Soc., 277: 1–42.

    Google Scholar 

  • Dill, A.R., Levine, M.D., and Noble, P.B. 1987. Multiple resolution:skeletons.IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(4):495–504.

    Google Scholar 

  • do Carmo, M.P. 1976.Differential Geometry of Curves and Surfaces. Prentice-Hall, New Jersey.

    Google Scholar 

  • Dudek, G. 1990. Shape representation from curvature. Ph.D. dissertation, Dept. of Computer Science, University of Toronto, Toronto, Canada.

    Google Scholar 

  • Elder, J. and Zucker, S.W. 1993. The effect of contour closure on the rapid discrimination of two-dimensional shapes.Vision Research, 33(7):981–991.

    Google Scholar 

  • Ferrie, F.P., Levine, M.D., and Zucker, S.W. 1982. Cell tracking: A modeling and minimization approach.IEEE Trans. Pattern Analysis and Machine Intelligence, 4:277–291.

    Google Scholar 

  • Firey, W.J. 1974. Shapes of worn stones.Mathematika, 21:1–11.

    Google Scholar 

  • Fischler, M. and Elschlager, R. 1973. The representation and matching of pictorial structures.IEEE Transactions on Computers, 22:67–92.

    Google Scholar 

  • Fleming, W. and Soner, H. 1993.Controlled Markov Processes and Viscosity Solutions. Springer-Verlag.

  • Freeman, H. 1974. Computer processing of line drawing images.Computer Surveys, 6(1):57–98.

    Google Scholar 

  • Gage, M. and Hamilton, R.S. 1986. The heat equation shrinking convex plane curves.J. Differential Geometry, 23:69–96.

    Google Scholar 

  • Garabedian, P. 1964.Partial Differential Equations. John Wiley and Sons.

  • Gardenier, P., McCallum, B., and Bates, R. 1986. Fourier transform magnitudes are unique pattern recognition templates.Biological Cybernetics, 54:385–391.

    Google Scholar 

  • Gombrich, E. 1956. Art and Illusion. Princeton University Press.

  • Granlund, G. 1972. Fourier processing for handprinted character recognition.IEEE Transaction on Computing, c-21:195–201.

    Google Scholar 

  • Grayson, M.A. 1989. Shortening embedded curves.Annals of Mathematics, 129:71–111.

    Google Scholar 

  • Hoffman, D.D. and Richards, W.A. 1985. Parts of recognition.Cognition, 18:65–96.

    Google Scholar 

  • Hopf, E. 1950. The partial differential equationu t +uu t u x x.Comm. Pure Appl. Math., 3:201–230.

    Google Scholar 

  • Kass, M., Witkin, A., and Terzopoulos, D. 1988. Snakes: Active contour models.International Journal of Computer Vision, 1:321–331.

    Google Scholar 

  • Kimia, B.B. 1990. Conservation laws and a theory of shape. Ph.D. dissertation. McGill Centre for Intelligent Machines, McGill University, Montreal, Canada.

    Google Scholar 

  • Kimia, B.B., Tannenbaum, A.R., and Zucker, S.W. 1989. Toward a computational theory of shape: An overview. CIM-89-13, McGill Centre for Intelligent Machines, McGill University, Montreal, Canada.

    Google Scholar 

  • Kimia, B.B., Tannenbaum, A.R., and Zucker, S.W. 1990. Toward a computational theory of shape: An overview. In O. Faugeras, ed.,Lecture Notes in Computer Science, Berlin, Springer Verlag, 427:402–407.

    Google Scholar 

  • Kimia, B.B., Tannenbaum, A.R., and Zucker, S.W. 1992. On the evolution of curves via a function of curvature, I: The classical case.Journal of Mathematical Analysis and Applications, 163(2).

  • Kimia, B.B., Tannenbaum, A.R., and Zucker, S.W. 1993. Non-linear shape approximation via the entropy scale space. InProceedings of the SPIE's Geometric Methods in Computer Vision II, volume 2031, San Diego, California, pp. 218–233.

  • Kimia, B.B., Tannenbaum, A.R., and Zucker, S.W. 1994. On the evolution of curves via a function of curvature, II: Local properties. In Preparation.

  • Kimia, B.B., Tannenbaum, A.R., and Zucker, S.W. 1994. Shapes, shocks, and deformations, II: The simplification of shape and the entropy scale-space. In preparation.

  • Koenderink, J.J. 1984. The structure of images.Biological Cybernetics, 50:363–370.

    Google Scholar 

  • Koenderink, J.J. 1990.Solid Shape. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Koenderink, J.J. and van Doorn, A.J. 1986. Dynamic shape.Biolological Cybernetics, 53:383–396.

    Google Scholar 

  • Langer, J. 1980. Instabilities and pattern formation in crystal growth.Reviews of Modern Physics, 52(1): 1–28.

    Google Scholar 

  • Lax, P.D. 1957. Hyperbolic systems of conservation laws II.Comm. Pure Appl. Math., 10:537–566.

    Google Scholar 

  • Lax, P.D. 1971.Shock Waves and Entropy, Academic Press, New York, pp. 603–634.

    Google Scholar 

  • Lax, P.D. 1973.Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM Regional Conference series in Applied Mathematics, Philadelphia.

  • Leclerc, Y.G. 1989. Constructing simple stable descriptions for image partitioning.International Journal of Computer Vision,3:73–102.

    Google Scholar 

  • Leyton, M. 1987. Symmetry-curvature duality.Computer Vision, Graphics, and Image Processing, 38:327–341.

    Google Scholar 

  • Leyton, M. 1988. A process grammar for shape.Artificial Intelligence, 34:213–247.

    Google Scholar 

  • Leyton, M. 1989. Inferring causal history from shape.Cognitive Science, 13:357–387.

    Google Scholar 

  • Link, N.K. and Zucker, S.W. 1987. Sensitivity to corners in flow patterns.Spatial Vision, 12(3):233–244.

    Google Scholar 

  • Lions, P. 1981.Generalized Solutions of Hamilton-Jacobi Eqautions. Pitman.

  • Marr, D. and Nishihara, K.H. 1978. Representation and recognition of the spatial organization of three-dimensional structure.Proceedings of the Royal Society of London, B, 200:269–294.

    Google Scholar 

  • Mokhtarian, F. and Mackworth, A. 1986. Scale-based description of planar curves and two-dimensional shapes.PAMI, 8:34–43.

    Google Scholar 

  • Mumford, D. 1987. The problem of robust shape descriptors. InProceedings of the First International Conference on Computer Vision, London, England, pp. 602–606.

  • Oleinik, O. 1957. Discontinuous solutions of nonlinear differential equations.Amer. Math. Soc. Transl. Ser. 2, 26:95–172.

    Google Scholar 

  • Osher, S. and Sethian, J. 1988. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations.Journal of Computational Physics, 79:12–49.

    Google Scholar 

  • Pentland, A. 1987. Recognition by parts. InFirst International Conference on Computer Vision, (London, England), IEEE Computer Society Press, Washington, DC.

    Google Scholar 

  • Pentland, A. 1989. Part segmentation for object recognition.Neural Computation, 1:82–91.

    Google Scholar 

  • Perona, P. and Malik, J. 1990. Scale-space and edge detection using anistropic diffusion.IEEE Trans. Pattern Analysis and Machine Intelligence, 12(7):629–639.

    Google Scholar 

  • Persoon, E. and Fu, K. 1977. Shape discrimination using fourier descriptors.IEEE Transaction on Systems, Man, and Cybernetics, SMC-7:170–179.

    Google Scholar 

  • Pizer, S.M., Oliver, W.R., and Bloomberg, S.H. 1987. Hierarchical shape description via the multiresolution symmetric axis transform.IEEE Trans. Pattern Analysis and Machine Intelligence, 9(4):505–511.

    Google Scholar 

  • Ramer, U. 1972. An iterative procedure for the polygonal approximation of plane curves.Computer Vision, Graphics and Image Processing, 1(3):244–256.

    Google Scholar 

  • Richards, W., Dawson, B., and Whittington, D. 1986. Encoding contour shape by curvature extrema.Journal of Optical Society of America, 3(9): 1483–1489.

    Google Scholar 

  • Richards, W. and Hoffman, D.D. 1985. Codon constraints on closed 2-d shapes.Computer Vision, Graphics and Image Processing, 31(2):156–177.

    Google Scholar 

  • Rosch, E., Mervis, C.B., Gray, W.D., Johnson, D.M., and Boyes-Braem, P. 1976. Basic objects in natural categories.Cognitive Psychology, 8:382–439.

    Google Scholar 

  • Rosenfeld, A. and Kak, A.C. 1982.Digital Picture Processing. Academic Press.

  • Samet, H. 1980. Region representation: Quad trees from boundary codes.Comm. ACM, 23(3):163–170.

    Google Scholar 

  • Sapiro, G., Kimia, B.B., Kimmel, R., Shaked, D., and Bruckstein, A. 1992. Implementing continuous-scale morphology.Pattern Recognition, 26(9).

  • Sapiro, G. and Tannenbaum, A. 1993. Affine invariant scale-space.International Journal of Computer Vision, 10:25–44.

    Google Scholar 

  • Sapiro, G. and Tannenbaum, A. 1994. On affine plane curve evolution.Journal of Functional Analysis, 119:79–120.

    Google Scholar 

  • Serra, J. 1982. Ed.Image Analysis and Mathematical Morpholpogy. Academic Press.

  • Serra, J. 1988. Ed.Image Analysis and Mathematical Morpholpogy, Part II: Theoretical Advances. Academic Press.

  • Sethian, J. and Osher, S. 1988.The Design of Algorithms for Hypersurfaces Moving with Curvature-Dependent Speed. Springer Verlag.

  • Sethian, J. 1985a. An analysis of flame propagation. Ph.D. dissertation, University of California, Berekely, California.

    Google Scholar 

  • Sethian, J. 1985b.Numerical Methods for Propagating Fronts, Springer-Verlag, New York, pp. 155–164.

    Google Scholar 

  • Sethian, J.A. 1985c. Curvature and the evolution of fronts.Comm. Math. Physics, 101:487–499.

    Google Scholar 

  • Sethian, J. 1989. A review of recent numerical algorithms for hyper-surfaces moving with curvature dependent speed.J. Diff. Goem., (33):131–161.

  • Sethian, J.A. 1990. Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws.J. Differential Geometry, 31:131–161.

    Google Scholar 

  • Siddiqi, K. and Kimia, B.B. 1994. Parts of visual form: Computational aspects.IEEE Trans. Pattern Analysis and Machine Intelligence. To appear.

  • Siddiqi, K., Manos, A., and Kimia, B.B. 1993. Colored skeletons in scale. Technical Report. In preparation, Brown University.

  • Siddiqi, K., Tresness, K.J., and Kimia, B.B. 1992. Parts of visual form: Ecological and psychophysical aspects. Technical Report LEMS 104, LEMS, Brown University.

  • Sivashinsky, G. 1977. Nonlinear analysis of hydrodynamic instability in laminar flames-i. derivation of basic equations.Acta Astronautica, 4:1177–1206.

    Google Scholar 

  • Smith, J. 1981. Shape instabilities and pattern formation in solidification: A new mathod for numerical solution of the moving boundary problem.Journal of Computational Physics, 39:112–127.

    Google Scholar 

  • Smoller, J. 1993.Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, New York.

    Google Scholar 

  • Solina, F. and Bajcsy, R. 1990. Recovery of parametric models from range images: The case for superquadrics with global deformations.IEEE Trans. Pattern Analysis and Machine Intelligence, 12:131–147.

    Google Scholar 

  • Ulupinar, F. and Nevatia, R. 1990. Recovering shape from contour for constant cross section generalized cylinders. InCVPR'91 (IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Maui, HI), Washington, DC, Computer Society Press, pp. 674–676.

    Google Scholar 

  • Vincent, L. 1991. Morphological transformations of binary images with arbitrary structuring elements.Signal Processing, 22(1):3–23.

    Google Scholar 

  • Wallace, T. and Wintz, P. 1980. An efficient three-dimensional aircraft recognition algorithm using normalized fourier descriptors.Computer Vision, Graphics, and Image Processing, 13:99–126.

    Google Scholar 

  • Waltz, D. 1975.Understanding Line Drawings of Scenes with Shadows. McGraw-Hill.

  • Widder, D. 1975.The Heat Equation. Academic Press.

  • Witkin, A.P. 1983. Scale-space filtering. InProceedings of the 8th International Joint Conference on Artificial Intelligence, Karlsruhe, West Germany, pp. 1019–1022.

  • Zahn, C. and Roskies, R. 1972. Fourier descriptors for plane closed curves.IEEE Transactions on Computers, C-21:269–281.

    Google Scholar 

  • Zucker, S.W., Dobbins, A., and Iverson, L. 1989. Two stages of curve detection suggest two styles of visual computation.Neural Computation, 1:68–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimia, B.B., Tannenbaum, A.R. & Zucker, S.W. Shapes, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space. Int J Comput Vision 15, 189–224 (1995). https://doi.org/10.1007/BF01451741

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01451741

Keywords

Navigation