Summary
We introduce two families of mixed finite element on conforming inH(div) and one conforming inH(curl). These finite elements can be used to approximate the Stokes' system.
Similar content being viewed by others
References
Brezzi, F.: On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO8, 129–151 (1974)
Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. (To appear in Numer. Math.)
Ciarlet, P.G.: The finite element method for elliptic problems, Amsterdam North Holland 1978
Ciarlet, P.G., Raviart, P.A.: A mixed finite element method for the biharmonic equation. Mathématical aspects in finite element method (C. de Boor ed.), pp. 125–145. New York: Academic Press 1974
Fortin, M.: An analysis of the convergence of mixed finite element method. RAIRO11, 341–354 (1977)
Nédélec, J.C.: Mixed finite element in ℝ3. Numer. Math.35, 315–341 (1980)
Nédélec, J.C.: Elements finis mixtes incompressibles pour l'equation de Stokes dans ℝ3. Numer. Math.39, 97–112 (1982)
Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical aspects of finite element methods (A. Dold and B. Eckmann, eds.) Lect. Notes 606. Berlin, Heidelberg, New York: Springer 1977
Thomas, J.M.: Thesis Paris (1977)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Nédélec, J.C. A new family of mixed finite elements in ℝ3 . Numer. Math. 50, 57–81 (1986). https://doi.org/10.1007/BF01389668
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01389668