Abstract
A few datasets of blockchain networks are available to be used in evaluating intrusion detection systems, and some of the proposed detection systems are evaluated as self-generated blockchain transactions’ datasets. These blockchain datasets use an unsuitable representation, which mainly depends on transaction format, and they contain non-qualified transactions’ features that lead to increased false alarm rate if the detection system is deployed in real blockchain networks. Further, due to authors’ copyright and privacy constraints, most of the existing blockchain datasets are unavailable to be used by other researchers. The paper aims to provide a benchmark dataset of transactions-based dataset of Ethereum network for the tuning, assessing, and comparisons of any newly proposed intrusion detection system used in Blockchain networks. The proposed datasets setup is based on a real Ethereum network and ensures abnormal transaction exposure. The proposed blockchain transactions’ dataset will be publicly available and represented using a set of transactions-based features. The requirements of reliable and valid datasets have been met in the proposed transactions-based dataset to ensure its worthiness to be used by other researchers in the same field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vujicic, D., Jagodic, D., Randic, S.: Blockchain technology, bitcoin, and Ethereum: a brief overview. In: 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–6. IEEE, East Sarajevo (2018). https://doi.org/10.1109/INFOTEH.2018.8345547
Gencer, A.E., Basu, S., Eyal, I., van Renesse, R., Sirer, E.G.: Decentralization in Bitcoin and Ethereum Networks. ArXiv180103998 Cs. (2018)
Shi, N.: A new proof-of-work mechanism for bitcoin. Financ. Innov. 2, 31 (2016). https://doi.org/10.1186/s40854-016-0045-6
Advisors, E.T.H., Sornette, D., Advisors, U.B.S., Lange, V.: ETHEREUM ANALYTICS (2019)
Sheinix: A Comprehensive view of Ethereum 2.0 (Serenity). https://medium.com/swlh/a-comprehensive-view-of-ethereum-2-0-serenity-5865ad8b7c62. Accessed 21 June 2020
Mehar, M.I., et al.: Understanding a revolutionary and flawed grand experiment in blockchain: the DAO attack. J. Cases Inf. Technol. JCIT 21, 19–32 (2019)
Lazarenko, A., Avdoshin, S.: Financial risks of the blockchain industry: a survey of cyberattacks. In: Arai, K., Bhatia, R., Kapoor, S. (eds.) FTC 2018. AISC, vol. 881, pp. 368–384. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02683-7_26
Li, J., Gu, C., Wei, F., Chen, X.: A survey on blockchain anomaly detection using data mining techniques. In: Zheng, Z., Dai, H.-N., Tang, M., Chen, X. (eds.) BlockSys 2019. CCIS, vol. 1156, pp. 491–504. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-2777-7_40
McGinn, D., McIlwraith, D., Guo, Y.: Towards open data blockchain analytics: a bitcoin perspective. R. Soc. Open Sci. 5, 180298 (2018)
Sayadi, S., Rejeb, S.B., Choukair, Z.: Anomaly detection model over blockchain electronic transactions. In: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 895–900. IEEE (2019)
Rouhani, S., Deters, R.: Performance analysis of Ethereum transactions in private blockchain. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 70–74. IEEE, Beijing (2017). https://doi.org/10.1109/ICSESS.2017.8342866
Aung, Y.N., Tantidham, T.: Review of Ethereum: smart home case study. In: 2017 2nd International Conference on Information Technology (INCIT), pp. 1–4. IEEE, Nakhonpathom (2017). https://doi.org/10.1109/INCIT.2017.8257877
Jung, E., Le Tilly, M., Gehani, A., Ge, Y.: Data mining-based Ethereum fraud detection. In: 2019 IEEE International Conference on Blockchain (Blockchain), pp. 266–273. IEEE, Atlanta, GA, USA (2019). https://doi.org/10.1109/Blockchain.2019.00042
Kasireddy, P.: How does Ethereum work, anyway? https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369. Accessed 29 March 2020
Fiz Pontiveros, B.B., Norvill, R., State, R.: Recycling smart contracts: compression of the Ethereum blockchain. In: 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–5. IEEE, Paris (2018). https://doi.org/10.1109/NTMS.2018.8328742
Wohrer, M., Zdun, U.: Smart contracts: security patterns in the Ethereum ecosystem and solidity. In: 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE), pp. 2–8. IEEE, Campobasso (2018). https://doi.org/10.1109/IWBOSE.2018.8327565
Buccafurri, F., Lax, G., Musarella, L., Russo, A.: Ethereum transactions and smart contracts among secure identities. In: DLT@ ITASEC, pp. 5–16 (2019)
Chen, T., et al.: DataEther: data exploration framework for Ethereum. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 1369–1380. IEEE, Dallas, TX, USA (2019). https://doi.org/10.1109/ICDCS.2019.00137
Bartoletti, M., Carta, S., Cimoli, T., Saia, R.: Dissecting Ponzi schemes on Ethereum: identification, analysis, and impact. Future Gener. Comput. Syst. 102, 259–277 (2020). https://doi.org/10.1016/j.future.2019.08.014
Pierro, G.A., Rocha, H.: The influence factors on Ethereum transaction fees. In: 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), pp. 24–31. IEEE, Montreal, QC, Canada (2019). https://doi.org/10.1109/WETSEB.2019.00010
Kiffer, L., Levin, D., Mislove, A.: Analyzing Ethereum’s contract topology. In: Proceedings of the Internet Measurement Conference 2018, pp. 494–499 (2018)
Torres, C.F., Schütte, J., State, R.: Osiris: hunting for integer bugs in Ethereum smart contracts. In: Proceedings of the 34th Annual Computer Security Applications Conference, pp. 664–676 (2018)
Hildenbrandt, E., et al.: Kevm: a complete formal semantics of the Ethereum virtual machine. In: 2018 IEEE 31st Computer Security Foundations Symposium (CSF), pp. 204–217. IEEE (2018)
Norvill, R., Fiz, B., State, R., Cullen, A.: Standardising smart contracts: automatically inferring ERC standards. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 192–195. IEEE (2019)
ERC. https://eips.ethereum.org/erc. Accessed 11 June 2020
Sperotto, A.: Flow-based intrusion detection. University of Twente, Enschede, Netherlands (2010)
Chen, H., Pendleton, M., Njilla, L., Xu, S.: A survey on Ethereum systems security: Vulnerabilities, attacks and defenses. ACM Comput. Surv. CSUR 53, 1–43 (2019)
Farrugia, S., Ellul, J., Azzopardi, G.: Detection of illicit accounts over the Ethereum blockchain. Expert Syst. Appl. 150, 113318 (2020)
Linoy, S., Stakhanova, N., Matyukhina, A.: Exploring Ethereum’s blockchain anonymity using smart contract code attribution. In: 2019 15th International Conference on Network and Service Management (CNSM), pp. 1–9. IEEE (2019)
Ostapowicz, M., Żbikowski, K.: Detecting fraudulent accounts on blockchain: a supervised approach. In: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. (eds.) WISE 2020. LNCS, vol. 11881, pp. 18–31. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34223-4_2
Phillips, R., Wilder, H.: Tracing Cryptocurrency Scams: Clustering Replicated Advance-Fee and Phishing Websites. ArXiv Prepr. ArXiv200514440 (2020). http://arxiv.org/abs/2005.14440
Podgorelec, B., Turkanović, M., Karakatič, S.: A machine learning-based method for automated blockchain transaction signing including personalized anomaly detection. Sensors 20, 147 (2020)
Chen, W., Zheng, Z., Ngai, E.C.-H., Zheng, P., Zhou, Y.: Exploiting blockchain data to detect smart ponzi schemes on Ethereum. IEEE Access 7, 37575–37586 (2019)
Wu, J., et al.: Who Are the Phishers? Phishing Scam Detection on Ethereum via Network Embedding. ArXiv Prepr. ArXiv191109259 (2019). https://arxiv.org/pdf/1911.09259.pdf
Zhang, L., Lee, B., Ye, Y., Qiao, Y.: Ethereum transaction performance evaluation using test-nets. In: Schwardmann, U., et al. (eds.) Euro-Par 2019. LNCS, vol. 11997, pp. 179–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48340-1_14
Kim, S.K., Ma, Z., Murali, S., Mason, J., Miller, A., Bailey, M.: Measuring Ethereum network peers. In: Proceedings of the Internet Measurement Conference 2018, pp. 91–104. ACM (2018)
BigQuery, G., Day, A., Khoury, Y.: Ethereum Classic Blockchain. https://kaggle.com/bigquery/crypto-ethereum-classic. Accessed 19 May 2020
Scicchitano, F., Liguori, A., Guarascio, M., Ritacco, E., Manco, G.: Blockchain Attack Discovery via Anomaly Detection
Davis, J.J., Clark, A.J.: Data preprocessing for anomaly based network intrusion detection: A review. Comput. Secur. 30, 353–375 (2011). https://doi.org/10.1016/j.cose.2011.05.008
Anbar, M., Abdullah, R., Al-Tamimi, B.N., Hussain, A.: A machine learning approach to detect router advertisement flooding attacks in next-generation IPv6 networks. Cogn. Comput. 10, 201–214 (2018)
Anbar, M., Abdullah, R., Hasbullah, I.H., Chong, Y.-W., Elejla, O.E.: Comparative performance analysis of classification algorithms for intrusion detection system. In: 2016 14th Annual Conference on Privacy, Security and Trust (PST), pp. 282–288. IEEE (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Al-E’mari, S., Anbar, M., Sanjalawe, Y., Manickam, S. (2021). A Labeled Transactions-Based Dataset on the Ethereum Network. In: Anbar, M., Abdullah, N., Manickam, S. (eds) Advances in Cyber Security. ACeS 2020. Communications in Computer and Information Science, vol 1347. Springer, Singapore. https://doi.org/10.1007/978-981-33-6835-4_5
Download citation
DOI: https://doi.org/10.1007/978-981-33-6835-4_5
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-33-6834-7
Online ISBN: 978-981-33-6835-4
eBook Packages: Computer ScienceComputer Science (R0)