iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/978-981-33-6835-4_5
A Labeled Transactions-Based Dataset on the Ethereum Network | SpringerLink
Skip to main content

A Labeled Transactions-Based Dataset on the Ethereum Network

  • Conference paper
  • First Online:
Advances in Cyber Security (ACeS 2020)

Abstract

A few datasets of blockchain networks are available to be used in evaluating intrusion detection systems, and some of the proposed detection systems are evaluated as self-generated blockchain transactions’ datasets. These blockchain datasets use an unsuitable representation, which mainly depends on transaction format, and they contain non-qualified transactions’ features that lead to increased false alarm rate if the detection system is deployed in real blockchain networks. Further, due to authors’ copyright and privacy constraints, most of the existing blockchain datasets are unavailable to be used by other researchers. The paper aims to provide a benchmark dataset of transactions-based dataset of Ethereum network for the tuning, assessing, and comparisons of any newly proposed intrusion detection system used in Blockchain networks. The proposed datasets setup is based on a real Ethereum network and ensures abnormal transaction exposure. The proposed blockchain transactions’ dataset will be publicly available and represented using a set of transactions-based features. The requirements of reliable and valid datasets have been met in the proposed transactions-based dataset to ensure its worthiness to be used by other researchers in the same field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cryptoScamDB.org.

  2. 2.

    https://www.kaggle.com/bigquery/crypto-ethereum-classic.

  3. 3.

    https://etherscamdb.info/.

  4. 4.

    https://github.com/MrLuit/EtherScamDB.

References

  1. Vujicic, D., Jagodic, D., Randic, S.: Blockchain technology, bitcoin, and Ethereum: a brief overview. In: 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–6. IEEE, East Sarajevo (2018). https://doi.org/10.1109/INFOTEH.2018.8345547

  2. Gencer, A.E., Basu, S., Eyal, I., van Renesse, R., Sirer, E.G.: Decentralization in Bitcoin and Ethereum Networks. ArXiv180103998 Cs. (2018)

    Google Scholar 

  3. Shi, N.: A new proof-of-work mechanism for bitcoin. Financ. Innov. 2, 31 (2016). https://doi.org/10.1186/s40854-016-0045-6

    Article  Google Scholar 

  4. Advisors, E.T.H., Sornette, D., Advisors, U.B.S., Lange, V.: ETHEREUM ANALYTICS (2019)

    Google Scholar 

  5. Sheinix: A Comprehensive view of Ethereum 2.0 (Serenity). https://medium.com/swlh/a-comprehensive-view-of-ethereum-2-0-serenity-5865ad8b7c62. Accessed 21 June 2020

  6. Mehar, M.I., et al.: Understanding a revolutionary and flawed grand experiment in blockchain: the DAO attack. J. Cases Inf. Technol. JCIT 21, 19–32 (2019)

    Article  Google Scholar 

  7. Lazarenko, A., Avdoshin, S.: Financial risks of the blockchain industry: a survey of cyberattacks. In: Arai, K., Bhatia, R., Kapoor, S. (eds.) FTC 2018. AISC, vol. 881, pp. 368–384. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02683-7_26

    Chapter  Google Scholar 

  8. Li, J., Gu, C., Wei, F., Chen, X.: A survey on blockchain anomaly detection using data mining techniques. In: Zheng, Z., Dai, H.-N., Tang, M., Chen, X. (eds.) BlockSys 2019. CCIS, vol. 1156, pp. 491–504. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-2777-7_40

    Chapter  Google Scholar 

  9. McGinn, D., McIlwraith, D., Guo, Y.: Towards open data blockchain analytics: a bitcoin perspective. R. Soc. Open Sci. 5, 180298 (2018)

    Article  Google Scholar 

  10. Sayadi, S., Rejeb, S.B., Choukair, Z.: Anomaly detection model over blockchain electronic transactions. In: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 895–900. IEEE (2019)

    Google Scholar 

  11. Rouhani, S., Deters, R.: Performance analysis of Ethereum transactions in private blockchain. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 70–74. IEEE, Beijing (2017). https://doi.org/10.1109/ICSESS.2017.8342866

  12. Aung, Y.N., Tantidham, T.: Review of Ethereum: smart home case study. In: 2017 2nd International Conference on Information Technology (INCIT), pp. 1–4. IEEE, Nakhonpathom (2017). https://doi.org/10.1109/INCIT.2017.8257877

  13. Jung, E., Le Tilly, M., Gehani, A., Ge, Y.: Data mining-based Ethereum fraud detection. In: 2019 IEEE International Conference on Blockchain (Blockchain), pp. 266–273. IEEE, Atlanta, GA, USA (2019). https://doi.org/10.1109/Blockchain.2019.00042

  14. Kasireddy, P.: How does Ethereum work, anyway? https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369. Accessed 29 March 2020

  15. Fiz Pontiveros, B.B., Norvill, R., State, R.: Recycling smart contracts: compression of the Ethereum blockchain. In: 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–5. IEEE, Paris (2018). https://doi.org/10.1109/NTMS.2018.8328742

  16. Wohrer, M., Zdun, U.: Smart contracts: security patterns in the Ethereum ecosystem and solidity. In: 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE), pp. 2–8. IEEE, Campobasso (2018). https://doi.org/10.1109/IWBOSE.2018.8327565

  17. Buccafurri, F., Lax, G., Musarella, L., Russo, A.: Ethereum transactions and smart contracts among secure identities. In: DLT@ ITASEC, pp. 5–16 (2019)

    Google Scholar 

  18. Chen, T., et al.: DataEther: data exploration framework for Ethereum. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 1369–1380. IEEE, Dallas, TX, USA (2019). https://doi.org/10.1109/ICDCS.2019.00137

  19. Bartoletti, M., Carta, S., Cimoli, T., Saia, R.: Dissecting Ponzi schemes on Ethereum: identification, analysis, and impact. Future Gener. Comput. Syst. 102, 259–277 (2020). https://doi.org/10.1016/j.future.2019.08.014

    Article  Google Scholar 

  20. Pierro, G.A., Rocha, H.: The influence factors on Ethereum transaction fees. In: 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), pp. 24–31. IEEE, Montreal, QC, Canada (2019). https://doi.org/10.1109/WETSEB.2019.00010

  21. Kiffer, L., Levin, D., Mislove, A.: Analyzing Ethereum’s contract topology. In: Proceedings of the Internet Measurement Conference 2018, pp. 494–499 (2018)

    Google Scholar 

  22. Torres, C.F., Schütte, J., State, R.: Osiris: hunting for integer bugs in Ethereum smart contracts. In: Proceedings of the 34th Annual Computer Security Applications Conference, pp. 664–676 (2018)

    Google Scholar 

  23. Hildenbrandt, E., et al.: Kevm: a complete formal semantics of the Ethereum virtual machine. In: 2018 IEEE 31st Computer Security Foundations Symposium (CSF), pp. 204–217. IEEE (2018)

    Google Scholar 

  24. Norvill, R., Fiz, B., State, R., Cullen, A.: Standardising smart contracts: automatically inferring ERC standards. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 192–195. IEEE (2019)

    Google Scholar 

  25. ERC. https://eips.ethereum.org/erc. Accessed 11 June 2020

  26. Sperotto, A.: Flow-based intrusion detection. University of Twente, Enschede, Netherlands (2010)

    Google Scholar 

  27. Chen, H., Pendleton, M., Njilla, L., Xu, S.: A survey on Ethereum systems security: Vulnerabilities, attacks and defenses. ACM Comput. Surv. CSUR 53, 1–43 (2019)

    Google Scholar 

  28. Farrugia, S., Ellul, J., Azzopardi, G.: Detection of illicit accounts over the Ethereum blockchain. Expert Syst. Appl. 150, 113318 (2020)

    Article  Google Scholar 

  29. Linoy, S., Stakhanova, N., Matyukhina, A.: Exploring Ethereum’s blockchain anonymity using smart contract code attribution. In: 2019 15th International Conference on Network and Service Management (CNSM), pp. 1–9. IEEE (2019)

    Google Scholar 

  30. Ostapowicz, M., Żbikowski, K.: Detecting fraudulent accounts on blockchain: a supervised approach. In: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. (eds.) WISE 2020. LNCS, vol. 11881, pp. 18–31. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34223-4_2

    Chapter  Google Scholar 

  31. Phillips, R., Wilder, H.: Tracing Cryptocurrency Scams: Clustering Replicated Advance-Fee and Phishing Websites. ArXiv Prepr. ArXiv200514440 (2020). http://arxiv.org/abs/2005.14440

  32. Podgorelec, B., Turkanović, M., Karakatič, S.: A machine learning-based method for automated blockchain transaction signing including personalized anomaly detection. Sensors 20, 147 (2020)

    Article  Google Scholar 

  33. Chen, W., Zheng, Z., Ngai, E.C.-H., Zheng, P., Zhou, Y.: Exploiting blockchain data to detect smart ponzi schemes on Ethereum. IEEE Access 7, 37575–37586 (2019)

    Article  Google Scholar 

  34. Wu, J., et al.: Who Are the Phishers? Phishing Scam Detection on Ethereum via Network Embedding. ArXiv Prepr. ArXiv191109259 (2019). https://arxiv.org/pdf/1911.09259.pdf

  35. Zhang, L., Lee, B., Ye, Y., Qiao, Y.: Ethereum transaction performance evaluation using test-nets. In: Schwardmann, U., et al. (eds.) Euro-Par 2019. LNCS, vol. 11997, pp. 179–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48340-1_14

    Chapter  Google Scholar 

  36. Kim, S.K., Ma, Z., Murali, S., Mason, J., Miller, A., Bailey, M.: Measuring Ethereum network peers. In: Proceedings of the Internet Measurement Conference 2018, pp. 91–104. ACM (2018)

    Google Scholar 

  37. BigQuery, G., Day, A., Khoury, Y.: Ethereum Classic Blockchain. https://kaggle.com/bigquery/crypto-ethereum-classic. Accessed 19 May 2020

  38. Scicchitano, F., Liguori, A., Guarascio, M., Ritacco, E., Manco, G.: Blockchain Attack Discovery via Anomaly Detection

    Google Scholar 

  39. Davis, J.J., Clark, A.J.: Data preprocessing for anomaly based network intrusion detection: A review. Comput. Secur. 30, 353–375 (2011). https://doi.org/10.1016/j.cose.2011.05.008

    Article  Google Scholar 

  40. Anbar, M., Abdullah, R., Al-Tamimi, B.N., Hussain, A.: A machine learning approach to detect router advertisement flooding attacks in next-generation IPv6 networks. Cogn. Comput. 10, 201–214 (2018)

    Article  Google Scholar 

  41. Anbar, M., Abdullah, R., Hasbullah, I.H., Chong, Y.-W., Elejla, O.E.: Comparative performance analysis of classification algorithms for intrusion detection system. In: 2016 14th Annual Conference on Privacy, Security and Trust (PST), pp. 282–288. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salam Al-E’mari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-E’mari, S., Anbar, M., Sanjalawe, Y., Manickam, S. (2021). A Labeled Transactions-Based Dataset on the Ethereum Network. In: Anbar, M., Abdullah, N., Manickam, S. (eds) Advances in Cyber Security. ACeS 2020. Communications in Computer and Information Science, vol 1347. Springer, Singapore. https://doi.org/10.1007/978-981-33-6835-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6835-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6834-7

  • Online ISBN: 978-981-33-6835-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics