Abstract
This paper proposes a novel Team Algorithm (TA) approach based on Ant Colony Optimization (ACO) for multi-objective optimization problems. The proposed method has shown a significant cooperative effect of different algorithms combined in a team of algorithms, achieving robustness in the resolution of a set of various combinatorial problems. Experimentally, the proposed approach has verified a balance on different performance measures in problems as the Traveling Salesman Problem (TSP), the Quadratic Assignment Problem (QAP) and the Vehicle Routing Problem with Time Windows (VRPTW). Robustness and balance are achieved due to a novel classification and selection of the algorithms to be used by the team, considering Pareto concept.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Coello, C., Lamont, G., Van Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, Heidelberg (2007)
Iredi, S., Merkle, D., Middendorf, M.: Bi-Criterion Optimization with Multi Colony Ant Algorithms. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 359–372. Springer, Heidelberg (2001)
García-Martínez, C., Cordón, O., Herrera, F.: An Empirical Análisis of Multiple Objective Ant Colony Optimization Algorithms for the Bi-criteria TSP. In: ANTS Workshop, pp. 61–72 (2004)
Moore, J., Chapman, R.: Application of Particle Swarm to Multiobjective Optimization. Department of Computer Science and Software Engineering, Auburn University (1999)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)
Paciello, J., Martínez, H., Barán, B.: Team Algorithms for Ant Colony based Multi-objective Problems. In: ASAI 2006, Mendoza, Argentina (September 2006)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms. Empirical result. Evolutionary computation 8(2), 173–195 (2000)
Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Graduate School of Engineering of the Air Force Institute of Technology, Air University (June 1999)
Barán, B., Kaszkurewicz, E., Bhaya, A.: Parallel Asynchronous Team Algorithms: Convergence and Performance Análisis. IEEE Transactions on Parallel & Distributed Systems 7(7), 677–688 (1996)
Fernandez, J., Barán, B.: Multiobjective Evolutionary Elitist Team Algorithm. In: XXXI Conference Latino-American of Informatics, CLEI, Cali, Colombia (2005)
Geist, A., et al.: PVM: Parallel Virtual machine - A user’s guide and Tutorial for Networked parallel Computing. MIT Press, Cambridge (1994)
Cantu-Paz, E.: Designing efficient and accurate parallel genetic algorithms., Technical Report 2108, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois (1999)
Stützle, T.: Parallelization strategies for ant colony optimization. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN V 1998. LNCS, vol. 1498, pp. 722–731. Springer, Heidelberg (1998)
Iredi, S., Merkle, D., Middendorf, M.: Bi-Criterion Optimization with Multi Colony Ant Algorithms. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 359–372. Springer, Heidelberg (2001)
Doerner, K., Gutjahr, W., Hartl, R., Strauss, C.: Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection. In: Proceedings of the 4th Metaheuristics International Conference, Porto, pp. 243–248 (2001)
Doerner, K., Hartl, R., Reimann, M.: Are COMPETants more competent for problem solving? – the case of a multiple objective transportation problem. Central European Journal of Operations Research 11(2), 115–141 (2003)
Schaerer, M., Barán, B.: A multiobjective Ant Colony System for Vehicle Routing Problems with Time Windows. In: Proc. Twenty first IASTED International Conference on Applied Informatics, Insbruck, Austria, pp. 97–102 (2003)
Pinto, D., Barán, B.: Solving Multiobjective Multicast Routing Problem with a new Ant Colony Optimization approach. In: II IFIP/ACM Latin-American Networking Conference, Cali, Colombia (October 2005)
Mariano, C., Morales, E.: A Multiple Objective Ant-Q Algorithm for the Design of Water Distribution Irrigation Networks. Technical Report HC-9904, Mexican Institute of Technology of water, Mexico (June 1999)
Gardel, P., Barán, B., Estigarribia, H., Fernandez, U.: Applications of Omicrom ACO to Reactive Compensation Problem in Multiobjective context. Argentine Congress of Computer Science. Concordia – Argentina (2005)
Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. KanGAL report 200001, Indian Institute of Technology, Kanpur, India (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lezcano, C., Pinto, D., Barán, B. (2008). Team Algorithms Based on Ant Colony Optimization – A New Multi-Objective Optimization Approach. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_77
Download citation
DOI: https://doi.org/10.1007/978-3-540-87700-4_77
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87699-1
Online ISBN: 978-3-540-87700-4
eBook Packages: Computer ScienceComputer Science (R0)