iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/978-3-540-87700-4_77
Team Algorithms Based on Ant Colony Optimization – A New Multi-Objective Optimization Approach | SpringerLink
Skip to main content

Team Algorithms Based on Ant Colony Optimization – A New Multi-Objective Optimization Approach

  • Conference paper
Parallel Problem Solving from Nature – PPSN X (PPSN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5199))

Included in the following conference series:

Abstract

This paper proposes a novel Team Algorithm (TA) approach based on Ant Colony Optimization (ACO) for multi-objective optimization problems. The proposed method has shown a significant cooperative effect of different algorithms combined in a team of algorithms, achieving robustness in the resolution of a set of various combinatorial problems. Experimentally, the proposed approach has verified a balance on different performance measures in problems as the Traveling Salesman Problem (TSP), the Quadratic Assignment Problem (QAP) and the Vehicle Routing Problem with Time Windows (VRPTW). Robustness and balance are achieved due to a novel classification and selection of the algorithms to be used by the team, considering Pareto concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coello, C., Lamont, G., Van Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  2. Iredi, S., Merkle, D., Middendorf, M.: Bi-Criterion Optimization with Multi Colony Ant Algorithms. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 359–372. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. García-Martínez, C., Cordón, O., Herrera, F.: An Empirical Análisis of Multiple Objective Ant Colony Optimization Algorithms for the Bi-criteria TSP. In: ANTS Workshop, pp. 61–72 (2004)

    Google Scholar 

  4. Moore, J., Chapman, R.: Application of Particle Swarm to Multiobjective Optimization. Department of Computer Science and Software Engineering, Auburn University (1999)

    Google Scholar 

  5. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

    Article  Google Scholar 

  6. Paciello, J., Martínez, H., Barán, B.: Team Algorithms for Ant Colony based Multi-objective Problems. In: ASAI 2006, Mendoza, Argentina (September 2006)

    Google Scholar 

  7. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms. Empirical result. Evolutionary computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  8. Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Graduate School of Engineering of the Air Force Institute of Technology, Air University (June 1999)

    Google Scholar 

  9. Barán, B., Kaszkurewicz, E., Bhaya, A.: Parallel Asynchronous Team Algorithms: Convergence and Performance Análisis. IEEE Transactions on Parallel & Distributed Systems 7(7), 677–688 (1996)

    Article  Google Scholar 

  10. Fernandez, J., Barán, B.: Multiobjective Evolutionary Elitist Team Algorithm. In: XXXI Conference Latino-American of Informatics, CLEI, Cali, Colombia (2005)

    Google Scholar 

  11. Geist, A., et al.: PVM: Parallel Virtual machine - A user’s guide and Tutorial for Networked parallel Computing. MIT Press, Cambridge (1994)

    Google Scholar 

  12. Cantu-Paz, E.: Designing efficient and accurate parallel genetic algorithms., Technical Report 2108, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois (1999)

    Google Scholar 

  13. Stützle, T.: Parallelization strategies for ant colony optimization. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN V 1998. LNCS, vol. 1498, pp. 722–731. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Iredi, S., Merkle, D., Middendorf, M.: Bi-Criterion Optimization with Multi Colony Ant Algorithms. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 359–372. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Doerner, K., Gutjahr, W., Hartl, R., Strauss, C.: Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection. In: Proceedings of the 4th Metaheuristics International Conference, Porto, pp. 243–248 (2001)

    Google Scholar 

  16. Doerner, K., Hartl, R., Reimann, M.: Are COMPETants more competent for problem solving? – the case of a multiple objective transportation problem. Central European Journal of Operations Research 11(2), 115–141 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Schaerer, M., Barán, B.: A multiobjective Ant Colony System for Vehicle Routing Problems with Time Windows. In: Proc. Twenty first IASTED International Conference on Applied Informatics, Insbruck, Austria, pp. 97–102 (2003)

    Google Scholar 

  18. Pinto, D., Barán, B.: Solving Multiobjective Multicast Routing Problem with a new Ant Colony Optimization approach. In: II IFIP/ACM Latin-American Networking Conference, Cali, Colombia (October 2005)

    Google Scholar 

  19. Mariano, C., Morales, E.: A Multiple Objective Ant-Q Algorithm for the Design of Water Distribution Irrigation Networks. Technical Report HC-9904, Mexican Institute of Technology of water, Mexico (June 1999)

    Google Scholar 

  20. Gardel, P., Barán, B., Estigarribia, H., Fernandez, U.: Applications of Omicrom ACO to Reactive Compensation Problem in Multiobjective context. Argentine Congress of Computer Science. Concordia – Argentina (2005)

    Google Scholar 

  21. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. KanGAL report 200001, Indian Institute of Technology, Kanpur, India (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lezcano, C., Pinto, D., Barán, B. (2008). Team Algorithms Based on Ant Colony Optimization – A New Multi-Objective Optimization Approach. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87700-4_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87699-1

  • Online ISBN: 978-3-540-87700-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics