iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/978-3-319-09339-0_1
Affective Tutoring System for Android Mobiles | SpringerLink
Skip to main content

Affective Tutoring System for Android Mobiles

  • Conference paper
Intelligent Computing Methodologies (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8589))

Included in the following conference series:

Abstract

Detecting and responding to affective states may be more influential than intelligence for tutoring success. This paper presents a software system that recognizes emotions of users using Android Cell Phones. The system software consists of a feature extractor, a neural network, and an intelligent tutoring system. The tutoring system, the neural network, and the emotion recognizer were implemented for running in Android devices. We also incorporate a novel fuzzy system, which is part of the intelligent tutoring system that takes actions depending of pedagogical and emotional states. The recognition rate of the emotion classifier was 96 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Picard, R.W.: Affective Computing. M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 321 (1995)

    Google Scholar 

  2. Arroyo, I., Woolf, B., Cooper, D., Burleson, W., Muldner, K., Christopherson, R.: Emotions sensors go to school. In: Proceedings of the 14th International Conference on Artificial Intelligence in Education, pp. 17–24. IOS Press, Amsterdam (2009)

    Google Scholar 

  3. Stankov, S., Glavinic, V., Rosic, M.: Intelligent Tutoring Systems in E-Learning Environment: Design, Implementation and Evaluation. Information Science Reference (2011)

    Google Scholar 

  4. Nkambou, R., Boudeau, J., Mizoguchi, R.: Introduction: What Are Intelligent Tutoring Systems, and Why This Book? Advances in Intelligent Tutoring Systems 308, 1–12 (2010)

    Google Scholar 

  5. Conati, C., Maclare, H.: Evaluating a probabilistic model of student affect. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 55–66. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. D’Mello, S.K., Picard, R.W., Graesser, A.C.: Towards an affective-sensitive AutoTutor. Special Issue on Intelligent Educational Systems IEEE Intelligent Systems 22(4), 53–61 (2007)

    Google Scholar 

  7. D’Mello, S., Jackson, T., Craig, S., Morgan, B., Chipman, P., White, H., et al.: AutoTutor detects and responds to learners affective and cognitive states. In: Proceedings of the Workshop on Emotional and Cognitive Issues at the International Conference of Intelligent Tutoring Systems Held in Conjunction with the 9th International Conference on Intelligent Tutoring Systems (2008)

    Google Scholar 

  8. Nixon, M., Aguado, A.: Feature Extraction & Image Processing, 2nd edn. Academic Press (2008)

    Google Scholar 

  9. Ekman, P., Friesen, W.: Unmasking the face: a guide to recognizing emotions from facial clues. Prentice-Hall, Englewood Cliffs (1975)

    Google Scholar 

  10. Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D., Hawk, S., van Knippenberg, A.: Presentation and validation of the Radboud Faces Database. Cognition & Emotion 24(8), 1377–1388 (2010), doi:10.1080/02699930903485076

    Article  Google Scholar 

  11. Zatarain-Cabada, R., Barrón-Estrada, M.L., Beltrán, J.A., Cibrian, F.L., Reyes-García, C., Hernández, Y.: Fermat: merging affective tutoring systems with learning social networks. In: Proceedings of the 12th IEEE International Conference on Advanced Learning Technologies, Rome, Italy, pp. 337–339. IEEE Computer Society (2012)

    Google Scholar 

  12. Ainsworth, S.: Evaluation methods for learning environments. Tutorial at AIED 2005 (2005), http://www.psychology.nottingham.ac.uk/staff/Shaaron.Ainsworth/aied_tutorialslides2005.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zatarain-Cabada, R., Barrón-Estrada, M.L., Camacho, J.L.O., Reyes-García, C.A. (2014). Affective Tutoring System for Android Mobiles. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09339-0_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09338-3

  • Online ISBN: 978-3-319-09339-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics