Abstract
Detecting and responding to affective states may be more influential than intelligence for tutoring success. This paper presents a software system that recognizes emotions of users using Android Cell Phones. The system software consists of a feature extractor, a neural network, and an intelligent tutoring system. The tutoring system, the neural network, and the emotion recognizer were implemented for running in Android devices. We also incorporate a novel fuzzy system, which is part of the intelligent tutoring system that takes actions depending of pedagogical and emotional states. The recognition rate of the emotion classifier was 96 %.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Picard, R.W.: Affective Computing. M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 321 (1995)
Arroyo, I., Woolf, B., Cooper, D., Burleson, W., Muldner, K., Christopherson, R.: Emotions sensors go to school. In: Proceedings of the 14th International Conference on Artificial Intelligence in Education, pp. 17–24. IOS Press, Amsterdam (2009)
Stankov, S., Glavinic, V., Rosic, M.: Intelligent Tutoring Systems in E-Learning Environment: Design, Implementation and Evaluation. Information Science Reference (2011)
Nkambou, R., Boudeau, J., Mizoguchi, R.: Introduction: What Are Intelligent Tutoring Systems, and Why This Book? Advances in Intelligent Tutoring Systems 308, 1–12 (2010)
Conati, C., Maclare, H.: Evaluating a probabilistic model of student affect. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 55–66. Springer, Heidelberg (2004)
D’Mello, S.K., Picard, R.W., Graesser, A.C.: Towards an affective-sensitive AutoTutor. Special Issue on Intelligent Educational Systems IEEE Intelligent Systems 22(4), 53–61 (2007)
D’Mello, S., Jackson, T., Craig, S., Morgan, B., Chipman, P., White, H., et al.: AutoTutor detects and responds to learners affective and cognitive states. In: Proceedings of the Workshop on Emotional and Cognitive Issues at the International Conference of Intelligent Tutoring Systems Held in Conjunction with the 9th International Conference on Intelligent Tutoring Systems (2008)
Nixon, M., Aguado, A.: Feature Extraction & Image Processing, 2nd edn. Academic Press (2008)
Ekman, P., Friesen, W.: Unmasking the face: a guide to recognizing emotions from facial clues. Prentice-Hall, Englewood Cliffs (1975)
Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D., Hawk, S., van Knippenberg, A.: Presentation and validation of the Radboud Faces Database. Cognition & Emotion 24(8), 1377–1388 (2010), doi:10.1080/02699930903485076
Zatarain-Cabada, R., Barrón-Estrada, M.L., Beltrán, J.A., Cibrian, F.L., Reyes-García, C., Hernández, Y.: Fermat: merging affective tutoring systems with learning social networks. In: Proceedings of the 12th IEEE International Conference on Advanced Learning Technologies, Rome, Italy, pp. 337–339. IEEE Computer Society (2012)
Ainsworth, S.: Evaluation methods for learning environments. Tutorial at AIED 2005 (2005), http://www.psychology.nottingham.ac.uk/staff/Shaaron.Ainsworth/aied_tutorialslides2005.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Zatarain-Cabada, R., Barrón-Estrada, M.L., Camacho, J.L.O., Reyes-García, C.A. (2014). Affective Tutoring System for Android Mobiles. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-09339-0_1
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09338-3
Online ISBN: 978-3-319-09339-0
eBook Packages: Computer ScienceComputer Science (R0)