Abstract
Noninterference theory supports the analysis of secure computations in multi-level security systems. In the nondeterministic setting, the approach to noninterefence based on weak bisimilarity has turned out to be inadequate for reversible systems. This drawback can be overcome by employing a more expressive semantics, which has been recently proven to be branching bisimilarity. In this paper we extend the result to reversible systems that feature both nondeterminism and probabilities. We recast noninterference properties by adopting probabilistic variants of weak and branching bisimilarities. Then we investigate a taxonomy of those properties as well as their preservation and compositionality aspects, along with a comparison with the nondeterministic taxonomy. The adequacy of the resulting noninterference theory for reversible systems is illustrated via a probabilistic smart contract example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aldini, A.: Classification of security properties in a Linda-like process algebra. Sci. Comput. Program. 63, 16–38 (2006)
Aldini, A., Bravetti, M., Gorrieri, R.: A process-algebraic approach for the analysis of probabilistic noninterference. J. Comput. Secur. 12, 191–245 (2004)
Andova, S., Georgievska, S., Trcka, N.: Branching bisimulation congruence for probabilistic systems. Theoret. Comput. Sci. 413, 58–72 (2012)
Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 119–130. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_14
Barbuti, R., Tesei, L.: A decidable notion of timed non-interference. Fund. Inform. 54, 137–150 (2003)
Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)
Bernardo, M., Esposito, A.: Modal logic characterizations of forward, reverse, and forward-reverse bisimilarities. In: Proceedings of the 14th International Symposium on Games, Automata, Logics, and Formal Verification (GANDALF 2023). EPTCS, vol. 390, pp. 67–81 (2023)
Bernardo, M., Mezzina, C.A.: Bridging causal reversibility and time reversibility: a stochastic process algebraic approach. Logical Methods Comput. Sci. 19(2:6), 1–27 (2023)
Brookes, S., Hoare, C., Roscoe, A.: A theory of communicating sequential processes. J. ACM 31, 560–599 (1984)
Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation*. In: Brim, L., Křetínský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 371–386. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45694-5_25
Chatterjee, K., Goharshady, A.K., Pourdamghani, A.: Probabilistic smart contracts: secure randomness on the blockchain. In: Proceedings of the 1st IEEE International Conference on Blockchain and Cryptocurrency (ICBC 2019), pp. 403–412. IEEE-CS Press (2019)
Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8_19
Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005). https://doi.org/10.1007/11539452_31
De Nicola, R., Montanari, U., Vaandrager, F.: Back and forth bisimulations. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 152–165. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0039058
Esposito, A., Aldini, A., Bernardo, M.: Branching bisimulation semantics enables noninterference analysis of reversible systems. In: Huisman, M., Ravara, A. (eds.) Formal Techniques for Distributed Objects, Components, and Systems, FORTE 2023, LNCS, vol. 13910, pp. 57–74. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35355-0_5
Focardi, R., Gorrieri, R.: Classification of security properties. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 331–396. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45608-2_6
Focardi, R., Rossi, S.: Information flow security in dynamic contexts. J. Comput. Secur. 14, 65–110 (2006)
Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8_26
van Glabbeek, R.J.: The linear time – branching time spectrum I. In: Handbook of Process Algebra, pp. 3–99. Elsevier (2001)
van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified models of probabilistic processes. Inf. Comput. 121, 59–80 (1995)
van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM 43, 555–600 (1996)
Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings of the 2nd IEEE Symposium on Security and Privacy (SSP 1982), pp. 11–20. IEEE-CS Press (1982)
Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities. In: Proceedings of the 11th IEEE Real-Time Systems Symposium (RTSS 1990), pp. 278–287. IEEE-CS Press (1990)
Hedin, D., Sabelfeld, A.: A perspective on information-flow control. In: Software Safety and Security – Tools for Analysis and Verification, pp. 319–347. IOS Press (2012)
Hillston, J., Marin, A., Piazza, C., Rossi, S.: Persistent stochastic non-interference. Fund. Inform. 181, 1–35 (2021)
Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19, 371–384 (1976)
Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)
Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 370–390. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_21
Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr: a causal-consistent reversible debugger for erlang. In: Gallagher, J.P., Sulzmann, M. (eds.) FLOPS 2018. LNCS, vol. 10818, pp. 247–263. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90686-7_16
Laursen, J., Ellekilde, L.P., Schultz, U.: Modelling reversible execution of robotic assembly. Robotica 36, 625–654 (2018)
Mantel, H.: Information flow and noninterference. In: Encyclopedia of Cryptography and Security, pp. 605–607. Springer, Cham (2011)
Milner, R.: Communication and Concurrency. Prentice Hall, Saddle River (1989)
Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0017309
Perumalla, K., Park, A.: Reverse computation for rollback-based fault tolerance in large parallel systems - evaluating the potential gains and systems effects. Clust. Comput. 17, 303–313 (2014)
Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4_25
Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. J. Logic Algebraic Program. 73, 70–96 (2007)
Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling of the ERK Signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 218–232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36315-3_18
Pinna, G.M.: Reversing steps in membrane systems computations. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2017. LNCS, vol. 10725, pp. 245–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73359-3_16
Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs. In: Proceedings of the 13th IEEE Computer Security Foundations Workshop (CSF 2000), pp. 200–214 (2000)
Sangiorgi, D., Milner, R.: The problem of weak bisimulation up to. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 32–46. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0084781
Schordan, M., Oppelstrup, T., Jefferson, D., Barnes, P., Jr.: Generation of reversible C++ code for optimistic parallel discrete event simulation. N. Gener. Comput. 36, 257–280 (2018)
Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD Thesis (1995)
Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1_35
Segala, R., Turrini, A.: Comparative analysis of bisimulation relations on alternating and non-alternating probabilistic models. In: Proceedings of the 2nd International Conference on the Quantitative Evaluation of Systems (QEST 2005), pp. 44–53. IEEE-CS Press (2005)
Siljak, H., Psara, K., Philippou, A.: Distributed antenna selection for massive MIMO using reversing Petri nets. IEEE Wirel. Commun. Lett. 8, 1427–1430 (2019)
Vassor, M., Stefani, J.-B.: Checkpoint/Rollback vs causally-consistent reversibility. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 286–303. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99498-7_20
Volpano, D., Smith, G.: Probabilistic noninterference in a concurrent language. In: Proceedings of the 11th IEEE Computer Security Foundations Workshop (CSF 1998), pp. 34–43. IEEE-CS Press (1998)
de Vries, E., Koutavas, V., Hennessy, M.: Communicating transactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 569–583. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4_39
Acknowledgment
This research has been supported by the PRIN 2020 project NiRvAna – Noninterference and Reversibility Analysis in Private Blockchains.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Esposito, A., Aldini, A., Bernardo, M. (2024). Noninterference Analysis of Reversible Probabilistic Systems. In: Castiglioni, V., Francalanza, A. (eds) Formal Techniques for Distributed Objects, Components, and Systems. FORTE 2024. Lecture Notes in Computer Science, vol 14678. Springer, Cham. https://doi.org/10.1007/978-3-031-62645-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-62645-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-62644-9
Online ISBN: 978-3-031-62645-6
eBook Packages: Computer ScienceComputer Science (R0)