iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/978-3-031-62645-6_3
Noninterference Analysis of  Reversible Probabilistic Systems | SpringerLink
Skip to main content

Noninterference Analysis of  Reversible Probabilistic Systems

  • Conference paper
  • First Online:
Formal Techniques for Distributed Objects, Components, and Systems (FORTE 2024)

Abstract

Noninterference theory supports the analysis of secure computations in multi-level security systems. In the nondeterministic setting, the approach to noninterefence based on weak bisimilarity has turned out to be inadequate for reversible systems. This drawback can be overcome by employing a more expressive semantics, which has been recently proven to be branching bisimilarity. In this paper we extend the result to reversible systems that feature both nondeterminism and probabilities. We recast noninterference properties by adopting probabilistic variants of weak and branching bisimilarities. Then we investigate a taxonomy of those properties as well as their preservation and compositionality aspects, along with a comparison with the nondeterministic taxonomy. The adequacy of the resulting noninterference theory for reversible systems is illustrated via a probabilistic smart contract example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aldini, A.: Classification of security properties in a Linda-like process algebra. Sci. Comput. Program. 63, 16–38 (2006)

    Article  MathSciNet  Google Scholar 

  2. Aldini, A., Bravetti, M., Gorrieri, R.: A process-algebraic approach for the analysis of probabilistic noninterference. J. Comput. Secur. 12, 191–245 (2004)

    Article  Google Scholar 

  3. Andova, S., Georgievska, S., Trcka, N.: Branching bisimulation congruence for probabilistic systems. Theoret. Comput. Sci. 413, 58–72 (2012)

    Article  MathSciNet  Google Scholar 

  4. Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 119–130. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_14

    Chapter  Google Scholar 

  5. Barbuti, R., Tesei, L.: A decidable notion of timed non-interference. Fund. Inform. 54, 137–150 (2003)

    MathSciNet  Google Scholar 

  6. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  7. Bernardo, M., Esposito, A.: Modal logic characterizations of forward, reverse, and forward-reverse bisimilarities. In: Proceedings of the 14th International Symposium on Games, Automata, Logics, and Formal Verification (GANDALF 2023). EPTCS, vol. 390, pp. 67–81 (2023)

    Google Scholar 

  8. Bernardo, M., Mezzina, C.A.: Bridging causal reversibility and time reversibility: a stochastic process algebraic approach. Logical Methods Comput. Sci. 19(2:6), 1–27 (2023)

    Google Scholar 

  9. Brookes, S., Hoare, C., Roscoe, A.: A theory of communicating sequential processes. J. ACM 31, 560–599 (1984)

    Article  MathSciNet  Google Scholar 

  10. Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation*. In: Brim, L., Křetínský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 371–386. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45694-5_25

    Chapter  Google Scholar 

  11. Chatterjee, K., Goharshady, A.K., Pourdamghani, A.: Probabilistic smart contracts: secure randomness on the blockchain. In: Proceedings of the 1st IEEE International Conference on Blockchain and Cryptocurrency (ICBC 2019), pp. 403–412. IEEE-CS Press (2019)

    Google Scholar 

  12. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8_19

    Chapter  Google Scholar 

  13. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005). https://doi.org/10.1007/11539452_31

    Chapter  Google Scholar 

  14. De Nicola, R., Montanari, U., Vaandrager, F.: Back and forth bisimulations. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 152–165. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0039058

    Chapter  Google Scholar 

  15. Esposito, A., Aldini, A., Bernardo, M.: Branching bisimulation semantics enables noninterference analysis of reversible systems. In: Huisman, M., Ravara, A. (eds.) Formal Techniques for Distributed Objects, Components, and Systems, FORTE 2023, LNCS, vol. 13910, pp. 57–74. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35355-0_5

  16. Focardi, R., Gorrieri, R.: Classification of security properties. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 331–396. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45608-2_6

    Chapter  Google Scholar 

  17. Focardi, R., Rossi, S.: Information flow security in dynamic contexts. J. Comput. Secur. 14, 65–110 (2006)

    Article  Google Scholar 

  18. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8_26

    Chapter  Google Scholar 

  19. van Glabbeek, R.J.: The linear time – branching time spectrum I. In: Handbook of Process Algebra, pp. 3–99. Elsevier (2001)

    Google Scholar 

  20. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified models of probabilistic processes. Inf. Comput. 121, 59–80 (1995)

    Article  MathSciNet  Google Scholar 

  21. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM 43, 555–600 (1996)

    Article  MathSciNet  Google Scholar 

  22. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings of the 2nd IEEE Symposium on Security and Privacy (SSP 1982), pp. 11–20. IEEE-CS Press (1982)

    Google Scholar 

  23. Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities. In: Proceedings of the 11th IEEE Real-Time Systems Symposium (RTSS 1990), pp. 278–287. IEEE-CS Press (1990)

    Google Scholar 

  24. Hedin, D., Sabelfeld, A.: A perspective on information-flow control. In: Software Safety and Security – Tools for Analysis and Verification, pp. 319–347. IOS Press (2012)

    Google Scholar 

  25. Hillston, J., Marin, A., Piazza, C., Rossi, S.: Persistent stochastic non-interference. Fund. Inform. 181, 1–35 (2021)

    MathSciNet  Google Scholar 

  26. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19, 371–384 (1976)

    Article  MathSciNet  Google Scholar 

  27. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MathSciNet  Google Scholar 

  28. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 370–390. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_21

    Chapter  Google Scholar 

  29. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr: a causal-consistent reversible debugger for erlang. In: Gallagher, J.P., Sulzmann, M. (eds.) FLOPS 2018. LNCS, vol. 10818, pp. 247–263. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90686-7_16

    Chapter  Google Scholar 

  30. Laursen, J., Ellekilde, L.P., Schultz, U.: Modelling reversible execution of robotic assembly. Robotica 36, 625–654 (2018)

    Article  Google Scholar 

  31. Mantel, H.: Information flow and noninterference. In: Encyclopedia of Cryptography and Security, pp. 605–607. Springer, Cham (2011)

    Google Scholar 

  32. Milner, R.: Communication and Concurrency. Prentice Hall, Saddle River (1989)

    Google Scholar 

  33. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0017309

    Chapter  Google Scholar 

  34. Perumalla, K., Park, A.: Reverse computation for rollback-based fault tolerance in large parallel systems - evaluating the potential gains and systems effects. Clust. Comput. 17, 303–313 (2014)

    Article  Google Scholar 

  35. Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4_25

    Chapter  Google Scholar 

  36. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. J. Logic Algebraic Program. 73, 70–96 (2007)

    Article  MathSciNet  Google Scholar 

  37. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling of the ERK Signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 218–232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36315-3_18

    Chapter  Google Scholar 

  38. Pinna, G.M.: Reversing steps in membrane systems computations. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2017. LNCS, vol. 10725, pp. 245–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73359-3_16

    Chapter  Google Scholar 

  39. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs. In: Proceedings of the 13th IEEE Computer Security Foundations Workshop (CSF 2000), pp. 200–214 (2000)

    Google Scholar 

  40. Sangiorgi, D., Milner, R.: The problem of weak bisimulation up to. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 32–46. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0084781

    Chapter  Google Scholar 

  41. Schordan, M., Oppelstrup, T., Jefferson, D., Barnes, P., Jr.: Generation of reversible C++ code for optimistic parallel discrete event simulation. N. Gener. Comput. 36, 257–280 (2018)

    Article  Google Scholar 

  42. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD Thesis (1995)

    Google Scholar 

  43. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1_35

    Chapter  Google Scholar 

  44. Segala, R., Turrini, A.: Comparative analysis of bisimulation relations on alternating and non-alternating probabilistic models. In: Proceedings of the 2nd International Conference on the Quantitative Evaluation of Systems (QEST 2005), pp. 44–53. IEEE-CS Press (2005)

    Google Scholar 

  45. Siljak, H., Psara, K., Philippou, A.: Distributed antenna selection for massive MIMO using reversing Petri nets. IEEE Wirel. Commun. Lett. 8, 1427–1430 (2019)

    Article  Google Scholar 

  46. Vassor, M., Stefani, J.-B.: Checkpoint/Rollback vs causally-consistent reversibility. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 286–303. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99498-7_20

    Chapter  Google Scholar 

  47. Volpano, D., Smith, G.: Probabilistic noninterference in a concurrent language. In: Proceedings of the 11th IEEE Computer Security Foundations Workshop (CSF 1998), pp. 34–43. IEEE-CS Press (1998)

    Google Scholar 

  48. de Vries, E., Koutavas, V., Hennessy, M.: Communicating transactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 569–583. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4_39

    Chapter  Google Scholar 

Download references

Acknowledgment

This research has been supported by the PRIN 2020 project NiRvAna – Noninterference and Reversibility Analysis in Private Blockchains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Esposito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esposito, A., Aldini, A., Bernardo, M. (2024). Noninterference Analysis of  Reversible Probabilistic Systems. In: Castiglioni, V., Francalanza, A. (eds) Formal Techniques for Distributed Objects, Components, and Systems. FORTE 2024. Lecture Notes in Computer Science, vol 14678. Springer, Cham. https://doi.org/10.1007/978-3-031-62645-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62645-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62644-9

  • Online ISBN: 978-3-031-62645-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics