iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/978-3-031-09234-3_39
Improved Differential-Linear Attack with Application to Round-Reduced Speck32/64 | SpringerLink
Skip to main content

Improved Differential-Linear Attack with Application to Round-Reduced Speck32/64

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13269))

Included in the following conference series:

Abstract

Since the differential-linear cryptanalysis was introduced by Langford and Hellman in 1994, there have been many works inheriting and developing this technique. It has been used to attack numerous ciphers, and in particular, sets the record for Serpent, ICEPOLE, Chaskey, 8-round AES, and so on. In CRYPTO 2020, Beierle et al. showed that the data complexity of differential-linear attack can be significantly reduced by generating enough right pairs artificially. In this paper, we manage to find the property in the differential propagation of modular addition. Based on this, we can select special bits to flip to produce right pairs in a certain differential-linear attack. For application, we focus on the differential-linear attack of the ARX cipher Speck32/64. With the differential-linear trail we concatenate, we construct 9-round and 10-round distinguishers with the correlation of \(2^{11.58}\) and \(2^{14.58}\), respectively. Then we use enough flipped bits to reduce the complexity of the key recovery attack. As a result, we can use only \(2^{25}\) chosen plaintexts to attack 14-round Speck32/64 with the time complexity of about \(2^{62}\), which has a slight improvement than before. To our best knowledge, this is the first differential-linear attack of the Speck family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Source code about our experiment can be found in https://github.com/regnik/speck_dl_analysis.

  2. 2.

    In some literature, the linear approximation is measured by bias. Note that for a specific linear approximation, the correlation is twice the bias. And the analysis holds also.

  3. 3.

    The formula was adapted to differential-linear cryptanalysis in [14] and we use the adapted version here.

References

  1. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced Simon and Speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 525–545. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_27

    Chapter  Google Scholar 

  2. Ashur, T., Liu, Y.: Rotational cryptanalysis in the presence of constants. IACR Trans. Symmetric Cryptol. 2016(1), 57–70 (2016)

    Article  Google Scholar 

  3. Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 489–508. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_28

    Chapter  Google Scholar 

  4. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: Sha-3 proposal Blake. Submission to the NIST SHA-3 Competition (Round 2) (2008)

    Google Scholar 

  5. Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: DLCT: a new tool for differential-linear cryptanalysis. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 313–342. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_11

    Chapter  Google Scholar 

  6. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint Archive, Report 2013/404 (2013). https://eprint.iacr.org/2013/404

  7. Beierle, C., Leander, G., Todo, Y.: Improved differential-linear attacks with applications to ARX ciphers. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 329–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_12

    Chapter  Google Scholar 

  8. Benamira, A., Gerault, D., Peyrin, T., Tan, Q.Q.: A deeper look at machine learning-based cryptanalysis. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 805–835. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_28

    Chapter  Google Scholar 

  9. Bernstein, D.J.: ChaCha, a variant of Salsa 20 (2008). http://cr.yp.to/chacha.html

  10. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68351-3_8

    Chapter  Google Scholar 

  11. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_1

    Chapter  Google Scholar 

  12. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 546–570. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_28

    Chapter  Google Scholar 

  13. Biryukov, A., Velichkov, V., Le Corre, Y.: Automatic search for the best trails in ARX: application to block cipher Speck. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 289–310. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_15

    Chapter  Google Scholar 

  14. Blondeau, C., Leander, G., Nyberg, K.: Differential-linear cryptanalysis revisited. J. Cryptol. 30(3), 859–888 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Broll, M., et al.: Further improving differential-linear attacks: applications to chaskey and serpent. Cryptology ePrint Archive, Report 2021/820 (2021). https://eprint.iacr.org/2021/820

  16. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography, Springer, New York (2002)

    Book  MATH  Google Scholar 

  17. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.: Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 484–513. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_18

    Chapter  Google Scholar 

  18. Dinur, I.: Improved differential cryptanalysis of round-reduced speck. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 147–164. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_9

    Chapter  Google Scholar 

  19. Ferguson, N., et al.: The Skein hash function family. Submission to the NIST SHA-3 Competition (Round 2) (2009)

    Google Scholar 

  20. Gohr, A.: Improving attacks on round-reduced Speck32/64 using deep learning. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_6

    Chapter  Google Scholar 

  21. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_3

    Chapter  Google Scholar 

  22. Leurent, G.: Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 344–371. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_14

    Chapter  Google Scholar 

  23. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45473-X_28

    Chapter  Google Scholar 

  24. Liu, Y., Sun, S., Li, C.: Rotational cryptanalysis from a differential-linear perspective: practical distinguishers for round-reduced FRIET, Xoodoo, and Alzette. Accepted by EUROCRYPT 2021. Cryptology ePrint Archive, Report 2021/189 (2021). https://eprint.iacr.org/2021/189

  25. Liu, Y., Witte, G.D., Ranea, A., Ashur, T.: Rotational-XOR cryptanalysis of reduced-round SPECK. IACR Trans. Symmetric Cryptol. 2017(3), 24–36 (2017)

    Article  Google Scholar 

  26. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33

    Chapter  Google Scholar 

  27. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Verbauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_19

    Chapter  Google Scholar 

  28. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J. Cryptol. 21(1), 131–147 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shimizu, A., Miyaguchi, S.: Fast data encipherment algorithm FEAL. In: Chaum, D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 267–278. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-39118-5_24

    Chapter  Google Scholar 

  30. Song, L., Huang, Z., Yang, Q.: Automatic differential analysis of ARX block ciphers with application to SPECK and LEA. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp. 379–394. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40367-0_24

    Chapter  Google Scholar 

  31. Wallén, J.: Linear approximations of addition modulo 2n. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 261–273. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39887-5_20

    Chapter  Google Scholar 

  32. Yao, Y., Zhang, B., Wu, W.: Automatic search for linear trails of the SPECK family. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 158–176. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23318-5_9

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 62072181), NSFC-ISF Joint Scientific Research Program (No. 61961146004), Shanghai Trusted Industry Internet Software Collaborative Innovation Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoli Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, F., Wang, G. (2022). Improved Differential-Linear Attack with Application to Round-Reduced Speck32/64. In: Ateniese, G., Venturi, D. (eds) Applied Cryptography and Network Security. ACNS 2022. Lecture Notes in Computer Science, vol 13269. Springer, Cham. https://doi.org/10.1007/978-3-031-09234-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09234-3_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09233-6

  • Online ISBN: 978-3-031-09234-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics