iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/978-3-030-30625-0_12
Risk-Limiting Tallies | SpringerLink
Skip to main content

Risk-Limiting Tallies

  • Conference paper
  • First Online:
Electronic Voting (E-Vote-ID 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11759))

Included in the following conference series:

Abstract

Many voter-verifiable, coercion-resistant schemes have been proposed, but even the most carefully designed systems necessarily leak information via the announced result. In corner cases, this may be problematic. For example, if all the votes go to one candidate then all vote privacy evaporates. The mere possibility of candidates getting no or few votes could have implications for security in practice: if a coercer demands that a voter cast a vote for such an unpopular candidate, then the voter may feel obliged to obey, even if she is confident that the voting system satisfies the standard coercion resistance definitions. With complex ballots, there may also be a danger of “Italian” style (aka “signature”) attacks: the coercer demands the voter cast a ballot with a specific, identifying pattern.

Here we propose an approach to tallying end-to-end verifiable schemes that avoids revealing all the votes but still achieves whatever confidence level in the announced result is desired. Now a coerced voter can claim that the required vote must be amongst those that remained shrouded. Our approach is based on the well-established notion of Risk-Limiting Audits, but here applied to the tally rather than to the audit. We show that this approach counters coercion threats arising in extreme tallies and “Italian” attacks. We illustrate our approach by applying it to the Selene scheme, and we extend the approach to Risk-Limiting Verification, where not all vote trackers are revealed, thereby enhancing the coercion mitigation properties of Selene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The trustworthiness of the underlying records should be assessed by a compliance audit [25]. A RLA that relies on an untrustworthy record cannot reliably assess whether outcomes reflect how voters voted.

  2. 2.

    In our case, the items will be ballots, and their labels will represent votes; see Sect. 4.2.

  3. 3.

    Private communication.

References

  1. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.-J.: Electing a university president using open-audit voting: analysis of real-world use of Helios. In: Proceedings of EVT/WOTE (2009)

    Google Scholar 

  2. Adida, B., Neff, C.A.: Ballot casting assurance. In: Proceedings of the USENIX/Accurate Electronic Voting Technology Workshop 2006 on Electronic Voting Technology Workshop, EVT 2006, p. 7 (2006)

    Google Scholar 

  3. Basin, D.A., Radomirovic, S., Schmid, L.: Alethea: a provably secure random sample voting protocol. In: 31st IEEE Computer Security Foundations Symposium, CSF 2018, pp. 283–297 (2018)

    Google Scholar 

  4. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, pp. 544–553. ACM (1994)

    Google Scholar 

  5. Benaloh, J.: Simple verifiable elections. In: Proceedings of the USENIX/Accurate Electronic Voting Technology Workshop 2006 on Electronic Voting Technology Workshop, EVT 2006, p. 5 (2006)

    Google Scholar 

  6. Canard, S., Pointcheval, D., Santos, Q., Traoré, J.: Practical strategy-resistant privacy-preserving elections. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11099, pp. 331–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98989-1_17

    Chapter  Google Scholar 

  7. Chaum, D.: Random-sample voting. http://rsvoting.org/whitepaper/white_paper.pdf

  8. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election scheme. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827_8

    Chapter  Google Scholar 

  9. Cohen, J.: Improving privacy in cryptographic elections. Technical report (1986)

    Google Scholar 

  10. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic voting protocols: a taster. In: Chaum, D., et al. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp. 289–309. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12980-3_18

    Chapter  Google Scholar 

  11. Evans, S.N., Stark, P.B.: Confidence bounds for the mean of a non-negative population (2019, in press)

    Google Scholar 

  12. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, pp. 61–70. ACM (2005)

    Google Scholar 

  13. Kiayias, A., Zacharias, T., Zhang, B.: DEMOS-2: scalable E2E verifiable elections without random oracles. In: Proceedings of CCS, pp. 352–363 (2015)

    Google Scholar 

  14. Küsters, R., Truderung, T., Vogt, A.: A game-based definition of coercion-resistance and its applications. In: Proceedings of IEEE Computer Security Foundations Symposium (CSF), pp. 122–136 (2010)

    Google Scholar 

  15. Lindeman, M., Stark, P.B., Yates, V.: BRAVO: ballot-polling risk-limiting audits to verify outcomes. In: Proceedings of EVT/WOTE 2011 (2012)

    Google Scholar 

  16. Lindeman, M., Stark, P.B.: A gentle introduction to risk-limiting audits. IEEE Secur. Priv. 10, 42–49 (2012)

    Article  Google Scholar 

  17. Micali, S.: ALGORAND: the efficient and democratic ledger. CoRR, abs/1607.01341 (2016)

    Google Scholar 

  18. Ottoboni, K., Stark, P.B., Lindeman, M., McBurnett, N.: Risk-limiting audits by stratified union-intersection tests of elections (SUITE). In: Krimmer, R., et al. (eds.) E-Vote-ID 2018. LNCS, vol. 11143, pp. 174–188. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00419-4_12

    Chapter  Google Scholar 

  19. Rivest, R.L.: The ThreeBallot voting system. https://people.csail.mit.edu/rivest/Rivest-TheThreeBallotVotingSystem.pdf

  20. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: voting with transparent verifiability and coercion-mitigation. In: Financial Cryptography and Data Security: Workshops, pp. 176–192 (2016)

    Chapter  Google Scholar 

  21. Ryan, P.Y.A., Schneider, S.A., Teague, V.: End-to-end verifiability in voting systems, from theory to practice. IEEE Secur. Priv. 13(3), 59–62 (2015)

    Article  Google Scholar 

  22. Christianson, B.: Introduction: brief encounters. In: Christianson, B., Malcolm, J.A., Matyáš, V., Roe, M. (eds.) Security Protocols 2009. LNCS, vol. 7028, pp. 1–2. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36213-2_1

    Chapter  Google Scholar 

  23. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Bertino, E., Kurth, H., Martella, G., Montolivo, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61770-1_38

    Chapter  Google Scholar 

  24. Stark, P.B.: Conservative statistical post-election audits. Ann. Appl. Stat. 2, 550–581 (2008)

    Article  MathSciNet  Google Scholar 

  25. Stark, P.B., Wagner, D.A.: Evidence-based elections. IEEE Secur. Priv. 10, 33–41 (2012)

    Article  Google Scholar 

  26. Szepieniec, A., Preneel, B.: New techniques for electronic voting. USENIX J. Election Technol. Syst. (JETS) 3(2), 46–69 (2015)

    Google Scholar 

  27. Teague, V., Ramchen, K., Naish, L.: Coercion-resistant tallying for STV voting. In: 2008 USENIX/ACCURATE Electronic Voting Workshop, EVT 2008, Proceedings (2008)

    Google Scholar 

Download references

Acknowledgements

WJ and PYAR acknowledge the support of the Luxembourg National Research Fund (FNR) and the National Centre for Research and Development (NCBiR Poland) under the INTER/PolLux project VoteVerif (POLLUX-IV/1/2016). PBR was supported by the EU Horizon 2020 research and innovation programme under grant agreement No. 779391 (FutureTPM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Y. A. Ryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jamroga, W., Roenne, P.B., Ryan, P.Y.A., Stark, P.B. (2019). Risk-Limiting Tallies. In: Krimmer, R., et al. Electronic Voting. E-Vote-ID 2019. Lecture Notes in Computer Science(), vol 11759. Springer, Cham. https://doi.org/10.1007/978-3-030-30625-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30625-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30624-3

  • Online ISBN: 978-3-030-30625-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics