iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/978-3-030-05057-3_27
Towards the Independent Spanning Trees in the Line Graphs of Interconnection Networks | SpringerLink
Skip to main content

Towards the Independent Spanning Trees in the Line Graphs of Interconnection Networks

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11336))

Abstract

Node/edge-Independent spanning trees (ISTs) have attracted a lot of attention in the past twenty years. Many results such as edge-disjoint Hamilton cycles, traceability, number of spanning trees, structural properties, topological indices, etc, have been obtained on line graphs, and researchers have applied the line graphs of some interconnection networks into data center networks, such as SWCube, BCDC, etc. However, node/edge conjecture is still open for n-node-connected interconnection network with \(n\ge \) 5. So far, results have been obtained on a lot of special interconnection networks, but few results are reported on the line graphs of them. In this paper, we consider the problem of constructing node-ISTs in a line graph G of an interconnection network \(G'\). We first give the construction of node-ISTs in \(G'\) based on the edge-ISTs in G. Then, an algorithm to construct node-ISTs in G based on the edge-ISTs in \(G'\) is presented. At the end, simulation experiments on the line graphs of hypercubes show that the maximal height of the constructed node-ISTs on the line graph of n-dimensional hypercube is \(n+1\) for \(n\ge 3\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonomom, F., Durán, G., Safe, M.D., Wagler, A.K.: Clique-perfectness of complements of line graphs. Discret. Appl. Math. 186(1), 19–44 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bao, F., Funyu, Y., Hamada, Y., Igarashi, Y.: Reliable broadcasting and secure distributing in channel networks. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E81–A, 796–806 (1998)

    Google Scholar 

  3. Bao, F., Igarashi, Y., Öhring, S.R.: Reliable broadcasting in product networks. Discret. Appl. Math. 83(1–3), 3–20 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Y.-S., Chiang, C.-Y., Chen, C.-Y.: Multi-node broadcasting in all-ported 3-D wormhole-routed torus using an aggregation-then-distribution strategy. J. Syst. Arch. 50(9), 575–589 (2004)

    Article  Google Scholar 

  5. Cheng, B., Fan, J., Jia, X., Zhang, S.: Independent spanning trees in crossed cubes. Inf. Sci. 233(1), 276–289 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, B., Fan, J., Jia, X., Wang, J.: Dimension-adjacent trees and parallel construction of independent spanning trees on crossed cubes. J. Parallel Distrib. Comput. 73, 641–652 (2013)

    Article  MATH  Google Scholar 

  7. Cheng, B., Fan, J., Lyu, Q., Zhou, J., Liu, Z.: Constructing independent spanning trees with height \(n\) on the \(n\)-dimensional crossed cube. Futur. Gener. Comput. Syst. 87, 404–415 (2018)

    Google Scholar 

  8. Cheng, B., Fan, J., Jia, X., Jia, J.: Parallel construction of independent spanning trees and an application in diagnosis on Möbius cubes. J. Supercomput. 65(3), 1279–1301 (2013)

    Article  Google Scholar 

  9. Cheriyan, J., Maheshwari, S.N.: Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs. J. Algorithms 9(4), 507–537 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Curran, S., Lee, O., Yu, X.: Finding four independent trees. SIAM J. Comput. 35(5), 1023–1058 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dong, F., Yan, W.: Expression for the number of spanning trees of line graphs of arbitrary connected graphs. J. Graph Theory 85(1), 74–93 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gopalan, A., Ramasubramanian, S.: A counterexample for the proof of implication conjecture on independent spanning trees. Inf. Process. Lett. 113(14–16), 522–526 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gopalan, A., Ramasubramanian, S.: On constructing three edge independent spanning trees. SIAM J. Comput. (2011, submitted)

    Google Scholar 

  14. Hasunuma, T.: Structural properties of subdivided-line graphs. J. Discret. Algorithms 31, 69–86 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harvey, D.J., Wood, D.R.: Treewidth of the line graph of a complete graph. J. Graph Theory 79(1), 48–54 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoyer, A., Thomas, R.: Four edge-independent spanning tree. SIAM J. Discret. Math. 32(1), 233–248 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huck, A.: Independent trees in planar graphs. Graphs Comb. 15(1), 29–77 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hussain, Z., AlBdaiwi, B., Cerny, A.: Node-independent spanning trees in Gaussian networks. J. Parallel Distrib. Comput. 109, 324–332 (2017)

    Article  Google Scholar 

  19. Li, D., Wu, J.: On data center network architectures for interconnecting dual-port servers. IEEE Trans. Comput. 64(11), 3210–3222 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Itai, A., Rodeh, M.: The multi-tree approach to reliability in distributed networks. Inf. Comput. 79(1), 43–59 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khuller, S., Schieber, B.: On independent spanning trees. Inf. Process. Lett. 42(6), 321–323 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim, J.-S., Lee, H.-O., Cheng, E., Lipták, L.: Independent spanning trees on even networks. Inf. Sci. 181(13), 2892–2905 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kim, J.-S., Lee, H.-O., Cheng, E., Lipták, L.: Optimal independent spanning trees on odd graphs. J. Supercomput. 56(2), 212–225 (2011)

    Article  Google Scholar 

  24. Li, H., He, W., Yang, W., Bai, Y.: A note on edge-disjoint Hamilton cycles in line graphs. Graphs Comb. 32, 741–744 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, Y.-J., Chou, W.Y., Lan, J.K., Chen, C.: Constructing independent spanning trees for locally twisted cubes. Theor. Comput. Sci. 412(22), 2237–2252 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Obokata, K., Iwasaki, Y., Bao, F., Igarashi, Y.: Independent spanning trees of product graphs and their construction. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E79–A(11), 1894–1903 (1996)

    MATH  Google Scholar 

  27. Su, G., Xu, L.: Topological indices of the line graph of subdivision graphs and their Schur-bounds. Appl. Math. Comput. 253, 395–401 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Tian, T., Xiong, L.: Traceability on 2-connected line graphs. Appl. Math. Comput. 321, 1339–1351 (2018)

    MathSciNet  Google Scholar 

  29. Tseng, Y.-C., Wang, S.-Y., Ho, C.-W.: Efficient broadcasting in wormhole-routed multicomputers: a network-partitioning approach. IEEE Trans. Parallel Distrib. Syst. 10(1), 44–61 (1999)

    Article  Google Scholar 

  30. Tang, S.-M., Wang, Y.-L., Leu, Y.-H.: Optimal independent spanning trees on hypercubes. J. Inf. Sci. Eng. 20(1), 143–155 (2004)

    MathSciNet  Google Scholar 

  31. Wang, X., Fan, J., Lin, C.-K., Zhou, J., Liu, Z.: BCDC: a high-performance, server-centric data center network. J. Comput. Sci. Technol. 33(2), 400–416 (2018)

    Article  MathSciNet  Google Scholar 

  32. Yang, J.-S., Tang, S.-M., Chang, J.-M., Wang, Y.-L.: Parallel construction of optimal independent spanning trees on hypercubes. Parallel Comput. 33(1), 73–79 (2007)

    Article  MathSciNet  Google Scholar 

  33. Zehavi, A., Itai, A.: Three tree-paths. J. Graph Theory 13(2), 175–188 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

This work is supported by National Natural Science Foundation of China (No. 61572337, No. 61502328, and No. 61602333), China Postdoctoral Science Foundation Funded Project (No. 2015M581858), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 18KJA520009), the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1501089B and No. 1701173B), Opening Foundation of Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks (No. WSNLBKF201701), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_2005 and No. KYCX18_2510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxi Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, B., Fan, J., Li, X., Wang, G., Zhou, J., Han, Y. (2018). Towards the Independent Spanning Trees in the Line Graphs of Interconnection Networks. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11336. Springer, Cham. https://doi.org/10.1007/978-3-030-05057-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05057-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05056-6

  • Online ISBN: 978-3-030-05057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics