iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/3-540-45294-X_9
Distributed LTL Model Checking Based on Negative Cycle Detection | SpringerLink
Skip to main content

Distributed LTL Model Checking Based on Negative Cycle Detection

  • Conference paper
  • First Online:
FST TCS 2001: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2245))

Abstract

This paper addresses the state explosion problem in automata based LTL model checking. To deal with large space requirements we turn to use a distributed approach. All the known methods for automata based model checking are basedon depth first traversal of the state space which is difficult to parallelise as the ordering in which vertices are visited plays an important role. We come up with entirely different approach which is dependent on locating cycles with negative length in a directed graph with real number length of edges. Our method allows reasonable distribution and the experimental results confirm its usefulness for distributed model checking.

This work has been partially supported by the Grant Agency of Czech Republic grants No. 201/00/1023 and201/00/0400.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Aggarwal, R. Alonso, and C. Courcoubetis. Distributed reachability analysis for protocol verification environments. In Discrete Event Systems: Models and Application, volume 103 of LNCS, pages 40–56. Springer, 1987.

    Chapter  Google Scholar 

  2. J. Barnat, L. Brim, and J. Stříbrná. DistributedLTL Model-Checking in SPIN. In Proc. SPIN 2001, volume 2057 of LNCS, pages 200–216. Springer, 2001.

    Book  Google Scholar 

  3. G. Behrmann, T. S. Hune, and F. W. Vaandrager. Distributed timed model checking — how the search order matters. In Proc. CAV 2000, volume 1855 of LNCS, pages 216–231. Springer, 2000.

    Google Scholar 

  4. S. Ben-David, T. Heyman, O. Grumberg, and A. Schuster. Scalable distributed on-the-fly symbolic model checking. In Proc. FMCAD 2000, 2000.

    Google Scholar 

  5. B. Bollig, M. Leucker, and M Weber. Parallel model checking for the alternation free mu-calculus. In Proc. TACAS 2001, volume 2031 of LNCS, pages 543–558. Springer, 2001.

    Google Scholar 

  6. L. Brim, I. Černá, P. Krčál, and R. Pelánek. Distributed shortest path for directed graphs with negative edge lengths. Technical Report FIMU-RS-2001-01, Faculty of Informatics, Masaryk University Brno, http://www...muni.cz/informatics/reports/, 2001.

  7. S. Chaudhuri and C. D. Zaroliagis. Shortest path queries in digraphs of small treewidth. In Proc. ESA 1995, volume 979 of LNCS, pages 31–45. Springer, 1995.

    Google Scholar 

  8. B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms. Mathematical Programming, (85):277–311, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  9. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on the state explosion problem in model checking. In Informatics-10 Years Back. 10 Years Ahead, volume 2000 of LNCS, pages 176–194. Springer, 2001.

    Google Scholar 

  10. E. Cohen. Efficient parallel shortest-paths in digraphs with a separator decomposition. Journal of Algorithms, 21(2):331–357, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  11. T. H. Cormen, Ch. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT, 1990.

    Google Scholar 

  12. A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of Dijkstra’s shortest path algorithm. In Proc. MFCS 1998, volume 1450 of LNCS, pages 722–731. Springer, 1998.

    Google Scholar 

  13. P. Spirakis D. Kavvadias, G. Pantziou and C. Zaroliagis. Efficient sequential and parallel algorithms for the negative cycle problem. In Proc. ISAAC 1994, volume 834 of LNCS, pages 270–278. Springer, 1994.

    Google Scholar 

  14. O. Grumberg, T. Heyman, and A. Schuster. Distributed model checking for mucalculus. In Proc. 13th Conference on Computer-Aided Verification CAV01, LNCS. Springer, 2001.

    Google Scholar 

  15. T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving scalability in parallel reachability analysis of very large circuits. In Proc. CAV 2000, volume 1855 of LNCS, pages 20–35. Springer, 2000.

    Google Scholar 

  16. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering, 23(5):279–295, 1997.

    Article  MathSciNet  Google Scholar 

  17. G.J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In The Spin Verification System, pages 23–32. American Mathematical Society, 1996.

    Google Scholar 

  18. F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In Proc. SPIN 1999, number 1680 in LNCS. Springer, 1999.

    Google Scholar 

  19. U. Meyer and P. Sanders. Parallel shortest path for arbitrary graphs. In Proc. EUROPAR 2000. LNCS, 2000.

    Google Scholar 

  20. K. Ramarao and S. Venkatesan. On finding and updating shortest paths distributively. Journal of Algorithms, 13:235–257, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  21. J.H. Reif. Depth-first search is inherrently sequential. Information Processing Letters, 20(5):229–234, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  22. S.H. Roosta. Parallel processing and parallel algorithms. Springer, 2000.

    Google Scholar 

  23. U. Stern and D.L. Dill. Parallelizing the Murφ verifier. In Proc. CAV 1997, volume 1254 of LNCS, pages 256–267. Springer, 1997.

    Google Scholar 

  24. R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on computing, pages 146–160, 1972.

    Google Scholar 

  25. J. Tra. and C.D. Zaroliagis. A simple parallel algorithm for the single-source shortest path problem on planar digraphs. In Proc. IRREGULAR-3 1996, volume 1117 of LNCS, pages 183–194S. Springer, 1996.

    Google Scholar 

  26. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Proc. LICS 1986, pages 332–344. Computer Society Press, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brim, L., Černá, I., Krčál, P., Pelánek, R. (2001). Distributed LTL Model Checking Based on Negative Cycle Detection. In: Hariharan, R., Vinay, V., Mukund, M. (eds) FST TCS 2001: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2001. Lecture Notes in Computer Science, vol 2245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45294-X_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45294-X_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43002-5

  • Online ISBN: 978-3-540-45294-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics