Abstract
This paper addresses the state explosion problem in automata based LTL model checking. To deal with large space requirements we turn to use a distributed approach. All the known methods for automata based model checking are basedon depth first traversal of the state space which is difficult to parallelise as the ordering in which vertices are visited plays an important role. We come up with entirely different approach which is dependent on locating cycles with negative length in a directed graph with real number length of edges. Our method allows reasonable distribution and the experimental results confirm its usefulness for distributed model checking.
This work has been partially supported by the Grant Agency of Czech Republic grants No. 201/00/1023 and201/00/0400.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
S. Aggarwal, R. Alonso, and C. Courcoubetis. Distributed reachability analysis for protocol verification environments. In Discrete Event Systems: Models and Application, volume 103 of LNCS, pages 40–56. Springer, 1987.
J. Barnat, L. Brim, and J. Stříbrná. DistributedLTL Model-Checking in SPIN. In Proc. SPIN 2001, volume 2057 of LNCS, pages 200–216. Springer, 2001.
G. Behrmann, T. S. Hune, and F. W. Vaandrager. Distributed timed model checking — how the search order matters. In Proc. CAV 2000, volume 1855 of LNCS, pages 216–231. Springer, 2000.
S. Ben-David, T. Heyman, O. Grumberg, and A. Schuster. Scalable distributed on-the-fly symbolic model checking. In Proc. FMCAD 2000, 2000.
B. Bollig, M. Leucker, and M Weber. Parallel model checking for the alternation free mu-calculus. In Proc. TACAS 2001, volume 2031 of LNCS, pages 543–558. Springer, 2001.
L. Brim, I. Černá, P. Krčál, and R. Pelánek. Distributed shortest path for directed graphs with negative edge lengths. Technical Report FIMU-RS-2001-01, Faculty of Informatics, Masaryk University Brno, http://www...muni.cz/informatics/reports/, 2001.
S. Chaudhuri and C. D. Zaroliagis. Shortest path queries in digraphs of small treewidth. In Proc. ESA 1995, volume 979 of LNCS, pages 31–45. Springer, 1995.
B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms. Mathematical Programming, (85):277–311, 1999.
E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on the state explosion problem in model checking. In Informatics-10 Years Back. 10 Years Ahead, volume 2000 of LNCS, pages 176–194. Springer, 2001.
E. Cohen. Efficient parallel shortest-paths in digraphs with a separator decomposition. Journal of Algorithms, 21(2):331–357, 1996.
T. H. Cormen, Ch. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT, 1990.
A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of Dijkstra’s shortest path algorithm. In Proc. MFCS 1998, volume 1450 of LNCS, pages 722–731. Springer, 1998.
P. Spirakis D. Kavvadias, G. Pantziou and C. Zaroliagis. Efficient sequential and parallel algorithms for the negative cycle problem. In Proc. ISAAC 1994, volume 834 of LNCS, pages 270–278. Springer, 1994.
O. Grumberg, T. Heyman, and A. Schuster. Distributed model checking for mucalculus. In Proc. 13th Conference on Computer-Aided Verification CAV01, LNCS. Springer, 2001.
T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving scalability in parallel reachability analysis of very large circuits. In Proc. CAV 2000, volume 1855 of LNCS, pages 20–35. Springer, 2000.
G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering, 23(5):279–295, 1997.
G.J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In The Spin Verification System, pages 23–32. American Mathematical Society, 1996.
F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In Proc. SPIN 1999, number 1680 in LNCS. Springer, 1999.
U. Meyer and P. Sanders. Parallel shortest path for arbitrary graphs. In Proc. EUROPAR 2000. LNCS, 2000.
K. Ramarao and S. Venkatesan. On finding and updating shortest paths distributively. Journal of Algorithms, 13:235–257, 1992.
J.H. Reif. Depth-first search is inherrently sequential. Information Processing Letters, 20(5):229–234, 1985.
S.H. Roosta. Parallel processing and parallel algorithms. Springer, 2000.
U. Stern and D.L. Dill. Parallelizing the Murφ verifier. In Proc. CAV 1997, volume 1254 of LNCS, pages 256–267. Springer, 1997.
R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on computing, pages 146–160, 1972.
J. Tra. and C.D. Zaroliagis. A simple parallel algorithm for the single-source shortest path problem on planar digraphs. In Proc. IRREGULAR-3 1996, volume 1117 of LNCS, pages 183–194S. Springer, 1996.
M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Proc. LICS 1986, pages 332–344. Computer Society Press, 1986.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brim, L., Černá, I., Krčál, P., Pelánek, R. (2001). Distributed LTL Model Checking Based on Negative Cycle Detection. In: Hariharan, R., Vinay, V., Mukund, M. (eds) FST TCS 2001: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2001. Lecture Notes in Computer Science, vol 2245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45294-X_9
Download citation
DOI: https://doi.org/10.1007/3-540-45294-X_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43002-5
Online ISBN: 978-3-540-45294-2
eBook Packages: Springer Book Archive