iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/11735106_5
A User-Item Relevance Model for Log-Based Collaborative Filtering | SpringerLink
Skip to main content

A User-Item Relevance Model for Log-Based Collaborative Filtering

  • Conference paper
Advances in Information Retrieval (ECIR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3936))

Included in the following conference series:

Abstract

Implicit acquisition of user preferences makes log-based collaborative filtering favorable in practice to accomplish recommendations. In this paper, we follow a formal approach in text retrieval to re-formulate the problem. Based on the classic probability ranking principle, we propose a probabilistic user-item relevance model. Under this formal model, we show that user-based and item-based approaches are only two different factorizations with different independence assumptions. Moreover, we show that smoothing is an important aspect to estimate the parameters of the models due to data sparsity. By adding linear interpolation smoothing, the proposed model gives a probabilistic justification of using TF×IDF-like item ranking in collaborative filtering. Besides giving the insight understanding of the problem of collaborative filtering, we also show experiments in which the proposed method provides a better recommendation performance on a music play-list data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proc. of UAI (1998)

    Google Scholar 

  2. Canny, J.: Collaborative filtering with privacy via factor analysis. In: Proc. of SIGIR (1999)

    Google Scholar 

  3. Claypool, M., Le, M.W.P., Brown, D.C.: Implicit interest indicators. In: Proc. of IUI (2001)

    Google Scholar 

  4. Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst. 22(1), 143–177 (2004)

    Article  Google Scholar 

  5. Eyheramendy, S., Lewis, D., Madigan, D.: On the naive bayes model for text categorization. In: Proc. of Artificial Intelligence and Statistics (2003)

    Google Scholar 

  6. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proc. of SIGIR (1999)

    Google Scholar 

  7. Hiemstra, D.: Term-specific smoothing for the language modeling approach to information retrieval: the importance of a query term. In: Proc. of SIGIR (2002)

    Google Scholar 

  8. Hofmann, T., Puzicha, J.: Latent class models for collaborative filtering. In: Proc. of IJCAI (1999)

    Google Scholar 

  9. Hull, D.: Using statistical testing in the evaluation of retrieval experiments. In: Proc. of SIGIR (1993)

    Google Scholar 

  10. Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: Proc. of CIKM (2001)

    Google Scholar 

  11. Lafferty, J., Zhai, C.: Probabilistic relevance models based on document and query generation. In: Language Modeling and Information Retrieval. Kluwer International Series on Information Retrieval, vol. 13 (2003)

    Google Scholar 

  12. Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 76–80 (Januvary/Febuary 2003)

    Google Scholar 

  13. Marlin, B.: Collaborative filtering: a machine learning perspective. Master’s thesis, Department of Computer Science, University of Toronto (2004)

    Google Scholar 

  14. Pennock, D.M., Horvitz, E., Lawrence, S., Giles, C.: Collaborative filtering by personality diagnosis: a hybrid memory and model based approach. In: Proc. of UAI (2000)

    Google Scholar 

  15. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Proc. of SIGIR (1998)

    Google Scholar 

  16. Salton, G., McGill, M.J.: Introduction to modern information retrieval. McGraw-Hill, New York (1983)

    MATH  Google Scholar 

  17. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proc. of the WWW Conference (2001)

    Google Scholar 

  18. van Rijsbergen, C.J.: Information Retrieval. Butterworths, London (1979)

    MATH  Google Scholar 

  19. Wang, J., Pouwelse, J., Lagendijk, R., Reinders, M.R.J.: Distributed collaborative filtering for peer-to-peer file sharing systems. In: Proc. of the 21st Annual ACM Symposium on Applied Computing (2006)

    Google Scholar 

  20. Xue, G.-R., Lin, C., Yang, Q., Xi, W., Zeng, H.-J., Yu, Y., Chen, Z.: Scalable collaborative filtering using cluster-based smoothing. In: Proc. of SIGIR (2005)

    Google Scholar 

  21. Zhai, C., Lafferty, J.D.: A study of smoothing methods for language models applied to ad hoc information retrieval. In: Proc. of SIGIR (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, J., de Vries, A.P., Reinders, M.J.T. (2006). A User-Item Relevance Model for Log-Based Collaborative Filtering. In: Lalmas, M., MacFarlane, A., Rüger, S., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds) Advances in Information Retrieval. ECIR 2006. Lecture Notes in Computer Science, vol 3936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11735106_5

Download citation

  • DOI: https://doi.org/10.1007/11735106_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33347-0

  • Online ISBN: 978-3-540-33348-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics