iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/doi/10.1007/11408031_26
A Non-convex PDE Scale Space | SpringerLink
Skip to main content

A Non-convex PDE Scale Space

  • Conference paper
Scale Space and PDE Methods in Computer Vision (Scale-Space 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3459))

Included in the following conference series:

Abstract

For image filtering applications, it has been observed recently that both diffusion filtering and associated regularization models provide similar filtering properties. The comparison has been performed for regularization functionals with convex penalization functional. In this paper we discuss the relation between non-convex regularization functionals and associated time dependent diffusion filtering techniques (in particular the Mean Curvature Flow equation). Here, the general idea is to approximate an evolution process by a sequence of minimizers of iteratively convexified energy (regularization) functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zeidler, E.: Nonlinear Functional Analysis and its Applications I. Springer, New York (1993) (corrected printing)

    MATH  Google Scholar 

  2. Crandall, M.G., Liggett, T.M.: Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93, 265–298 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  3. Radmoser, E., Scherzer, O., Weickert, J.: Scale-space properties of regularization methods. In: [29] (1999)

    Google Scholar 

  4. Scherzer, O., Weickert, J.: Relations between regularization and diffusion filtering. J. Math. Imag. Vision 12, 43–63 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Radmoser, E., Scherzer, O., Weickert, J.: Scale-space properties of nonstationary iterative regularization methods. Journal of Visual Communication and Image Representation 11, 96–114 (2000)

    Article  Google Scholar 

  6. Mrázek, P., Weickert, J., Steidl, G.: Correspondences between wavelet shrinkage and nonlinear diffusion. In: [30], pp. 101–116 (2003)

    Google Scholar 

  7. Steidl, G., Weickert, J.: Relations between soft wavelet shrinkage and total variation denoising. In: [31], pp. 198–205 (2002)

    Google Scholar 

  8. Evans, L.C.: Regularity for fully nonlinear elliptic equations and motion by mean curvature. In: Viscosity solutions and applications (Montecatini Terme, 1995). Lecture Notes in Math., vol. 1660, pp. 98–133. Springer, Berlin (1997)

    Chapter  Google Scholar 

  9. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123, 199–257 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Scherzer, O.: Explicit versus implicit relative error regularization on the space of functions of bounded variation. In: [32], pp. 171–198 (2002)

    Google Scholar 

  11. Lenzen, F., Scherzer, O.: Tikhonov type regularization methods: history and recent progress. In: Proceeding Eccomas 2004 (2004)

    Google Scholar 

  12. Grasmair, M., Scherzer, O.: Relaxation of non-convex singular functionals (2004) (submitted)

    Google Scholar 

  13. Scherzer, O.: A posteriori error estimates for nonlinear ill–posed problems. Nonlinear Analysis 45, 459–481 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Osher, S., Rudin, L.I.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27, 919–940 (1990)

    Article  MATH  Google Scholar 

  15. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  16. Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions. CRC–Press, Boca Raton (1992)

    MATH  Google Scholar 

  17. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. The Clarendon Press Oxford University Press, New York (2000)

    MATH  Google Scholar 

  18. Temam, R.: Problèmes mathématiques en plasticité. In: Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science]. Gauthier-Villars, Montrouge, vol. 12 (1983)

    Google Scholar 

  19. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  20. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin (1989)

    MATH  Google Scholar 

  21. Roberts, A.W., Varberg, D.E.: Convex functions. In: Pure and Applied Mathematics, vol. 57. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1973)

    Google Scholar 

  22. Grasmair, M., Scherzer, O.: Relaxation of nonlocal variational functionals (2004) (submitted)

    Google Scholar 

  23. Bouchitté, G., Fonseca, I., Mascarenhas, L.: A global method for relaxation. Arch. Rational Mech. Anal. 145, 51–98 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Buttazzo, G., Dal Maso, G.: Γ-limits of integral functionals. J. Analyse Math. 37, 145–185 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  25. Aviles, P., Giga, Y.: Variational integrals on mappings of bounded variation and their lower semicontinuity. Arch. Ration. Mech. Anal. 115, 201–255 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Fonseca, I., Müller, S.: Quasi-convex integrands and lower semicontinuity in L 1. SIAM J. Math. Anal. 23, 1081–1098 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Fonseca, I., Müller, S.: Relaxation of quasiconvex functionals in BV(Ω, R p) for integrands \(f(x, u, \nabla u)\). Arch. Ration. Mech. Anal. 123, 1–49 (1993)

    Article  MATH  Google Scholar 

  28. Deckelnick, K., Dziuk, G.: Convergence of a finite element method for non-parametric mean curvature flow. Numer. Math. 72, 197–222 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nielsen, M., Johansen, P., Olsen, O., Weickert, J. (eds.): Scale-Space 1999. LNCS, vol. 1683. Springer, Heidelberg (1999)

    Google Scholar 

  30. Griffin, L.D., Lillholm, M. (eds.): Scale-Space 2003. LNCS, vol. 2695. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  31. Van Gool, L. (ed.): DAGM 2002. LNCS, vol. 2449. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  32. Nashed, M., Scherzer, O. (eds.): Interactions on Inverse Problems and Imaging. Contemporary Mathematics, vol. 313. AMS, Providence (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grasmair, M., Lenzen, F., Obereder, A., Scherzer, O., Fuchs, M. (2005). A Non-convex PDE Scale Space. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_26

Download citation

  • DOI: https://doi.org/10.1007/11408031_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25547-5

  • Online ISBN: 978-3-540-32012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics