Abstract
For image filtering applications, it has been observed recently that both diffusion filtering and associated regularization models provide similar filtering properties. The comparison has been performed for regularization functionals with convex penalization functional. In this paper we discuss the relation between non-convex regularization functionals and associated time dependent diffusion filtering techniques (in particular the Mean Curvature Flow equation). Here, the general idea is to approximate an evolution process by a sequence of minimizers of iteratively convexified energy (regularization) functionals.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zeidler, E.: Nonlinear Functional Analysis and its Applications I. Springer, New York (1993) (corrected printing)
Crandall, M.G., Liggett, T.M.: Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93, 265–298 (1971)
Radmoser, E., Scherzer, O., Weickert, J.: Scale-space properties of regularization methods. In: [29] (1999)
Scherzer, O., Weickert, J.: Relations between regularization and diffusion filtering. J. Math. Imag. Vision 12, 43–63 (2000)
Radmoser, E., Scherzer, O., Weickert, J.: Scale-space properties of nonstationary iterative regularization methods. Journal of Visual Communication and Image Representation 11, 96–114 (2000)
Mrázek, P., Weickert, J., Steidl, G.: Correspondences between wavelet shrinkage and nonlinear diffusion. In: [30], pp. 101–116 (2003)
Steidl, G., Weickert, J.: Relations between soft wavelet shrinkage and total variation denoising. In: [31], pp. 198–205 (2002)
Evans, L.C.: Regularity for fully nonlinear elliptic equations and motion by mean curvature. In: Viscosity solutions and applications (Montecatini Terme, 1995). Lecture Notes in Math., vol. 1660, pp. 98–133. Springer, Berlin (1997)
Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123, 199–257 (1993)
Scherzer, O.: Explicit versus implicit relative error regularization on the space of functions of bounded variation. In: [32], pp. 171–198 (2002)
Lenzen, F., Scherzer, O.: Tikhonov type regularization methods: history and recent progress. In: Proceeding Eccomas 2004 (2004)
Grasmair, M., Scherzer, O.: Relaxation of non-convex singular functionals (2004) (submitted)
Scherzer, O.: A posteriori error estimates for nonlinear ill–posed problems. Nonlinear Analysis 45, 459–481 (2001)
Osher, S., Rudin, L.I.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27, 919–940 (1990)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)
Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions. CRC–Press, Boca Raton (1992)
Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. The Clarendon Press Oxford University Press, New York (2000)
Temam, R.: Problèmes mathématiques en plasticité. In: Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science]. Gauthier-Villars, Montrouge, vol. 12 (1983)
Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)
Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin (1989)
Roberts, A.W., Varberg, D.E.: Convex functions. In: Pure and Applied Mathematics, vol. 57. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1973)
Grasmair, M., Scherzer, O.: Relaxation of nonlocal variational functionals (2004) (submitted)
Bouchitté, G., Fonseca, I., Mascarenhas, L.: A global method for relaxation. Arch. Rational Mech. Anal. 145, 51–98 (1998)
Buttazzo, G., Dal Maso, G.: Γ-limits of integral functionals. J. Analyse Math. 37, 145–185 (1980)
Aviles, P., Giga, Y.: Variational integrals on mappings of bounded variation and their lower semicontinuity. Arch. Ration. Mech. Anal. 115, 201–255 (1991)
Fonseca, I., Müller, S.: Quasi-convex integrands and lower semicontinuity in L 1. SIAM J. Math. Anal. 23, 1081–1098 (1992)
Fonseca, I., Müller, S.: Relaxation of quasiconvex functionals in BV(Ω, R p) for integrands \(f(x, u, \nabla u)\). Arch. Ration. Mech. Anal. 123, 1–49 (1993)
Deckelnick, K., Dziuk, G.: Convergence of a finite element method for non-parametric mean curvature flow. Numer. Math. 72, 197–222 (1995)
Nielsen, M., Johansen, P., Olsen, O., Weickert, J. (eds.): Scale-Space 1999. LNCS, vol. 1683. Springer, Heidelberg (1999)
Griffin, L.D., Lillholm, M. (eds.): Scale-Space 2003. LNCS, vol. 2695. Springer, Heidelberg (2003)
Van Gool, L. (ed.): DAGM 2002. LNCS, vol. 2449. Springer, Heidelberg (2002)
Nashed, M., Scherzer, O. (eds.): Interactions on Inverse Problems and Imaging. Contemporary Mathematics, vol. 313. AMS, Providence (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grasmair, M., Lenzen, F., Obereder, A., Scherzer, O., Fuchs, M. (2005). A Non-convex PDE Scale Space. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_26
Download citation
DOI: https://doi.org/10.1007/11408031_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25547-5
Online ISBN: 978-3-540-32012-8
eBook Packages: Computer ScienceComputer Science (R0)