Abstract
Dataset search engines help scientists to find research datasets for scientific experiments. Current dataset search engines are query-driven, making them limited by the appropriate specification of search queries. An alternative would be to adopt a recommendation paradigm (“if you like this dataset, you’ll also like...”). Such a recommendation service requires an appropriate similarity metric between datasets. Various similarity measures have been proposed in computational linguistics and informational retrieval. The goal of this paper is to determine which similarity measure is suitable for a dataset search engine. We will report our experiments on different similarity measures over datasets. We will evaluate these similarity measures against the gold standards which are developed for Elsevier DataSearch, a commercial dataset search engine. With the help of F-measure evaluation measure and nDCG evaluation measure, we find that Wu-Palmer Similarity, a similarity measure which is based on hierarchical terminologies, can score quite good in our benchmarks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bauchner, H., Golub, R., Fontanarosa, P.: Data sharing: an ethical and scientific imperative. J. Am. Med. Assoc. 12(315), 1238–1240 (2016)
Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)
Borgman, C.L., Wallis, J.C., Mayernik, M.S.: Who’s got the data? Interdependencies in science and technology collaborations. Comput. Supported Coop. Work (CSCW) 21(6), 485–523 (2012). https://doi.org/10.1007/s10606-012-9169-z
Chinchor, N.: MUC-4 evaluation metrics. In: Proceedings of the 4th Conference on Message Understanding, MUC4 1992, pp. 22–29. Association for Computational Linguistics, New York (1992)
Cilibrasi, R.L., Vitanyi, P.M.: The google similarity distance. IEEE Trans. Knowl. Data Eng. 19(3), 370–383 (2007)
Editorial: Benefits of sharing. Nature 530(7589), 129 (2016). https://doi.org/10.1038/530129a
Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant documents. In: Proceedings of the 23rd SIGIR Conference, SIGIR 2000, pp. 41–48. ACM, New York (2000)
Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002). https://doi.org/10.1145/582415.582418
McNutt, M.: Data sharing. Science 351, 1007 (2016). https://doi.org/10.1126/science.aaf4545
Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA (2010)
Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. CoRR abs/cmp-lg/9511007 (1995). http://arxiv.org/abs/cmp-lg/9511007
Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, pp. 133–138. Association for Computational Linguistics (1994)
Acknowledgements
This work has been funded by the Netherlands Science Foundation NWO grant nr. 652.001.002, it is co-funded by Elsevier B.V., with funding for the first author by the China Scholarship Council (CSC) grant number 201807730060. We are grateful to our colleagues in Elsevier for sharing their dataset, and to all of our colleagues in the Data Search project for their valuable input.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, X., Huang, Z., van Harmelen, F. (2020). Evaluating Similarity Measures for Dataset Search. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12343. Springer, Cham. https://doi.org/10.1007/978-3-030-62008-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-62008-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62007-3
Online ISBN: 978-3-030-62008-0
eBook Packages: Computer ScienceComputer Science (R0)