iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/chapter/10.1007/978-3-030-40971-5_32
Stability of Jiles-Atherton Anhysteretic Magnetization Curve Model for Magnetic Materials with Uniaxial Anisotropy | SpringerLink
Skip to main content

Stability of Jiles-Atherton Anhysteretic Magnetization Curve Model for Magnetic Materials with Uniaxial Anisotropy

  • Conference paper
  • First Online:
Automation 2020: Towards Industry of the Future (AUTOMATION 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1140))

Included in the following conference series:

Abstract

Anhysteretic magnetization curve plays the key role in modelling the characteristics of components made of soft magnetic materials. However, due to the positive feedback, for some set of parameters the most common model of magnetization curve might be unstable. Moreover, formal stability assessment of anhysteretic magnetization curve is sophisticated due to nonlinearities. Paper presents practical approach to stability assessment of Jiles-Atherton anhysteretic magnetization curve model for magnetic materials with uniaxial anisotropy. Results of this assessment enable the increase of efficiency of the process of identification of the model’s parameters, and as a result enable more efficient description of functional characteristics of inductive components with cores made of anisotropic soft magnetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiles, D.C.: Introduction to Magnetism and Magnetic Materials. CRC Press, Boca Raton (2015)

    Google Scholar 

  2. Jiles, D.C., Atherton, D.L.: Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater. 61, 48–60 (1986). https://doi.org/10.1016/0304-8853(86)90066-1

    Article  Google Scholar 

  3. Jiles, D.C., Atherton, D.: Theory of ferromagnetic hysteresis. J. Appl. Phys. 55, 2115 (1984). https://doi.org/10.1063/1.333582

    Article  Google Scholar 

  4. Nowicki, M.: Anhysteretic magnetization measurement methods for soft magnetic materials. Materials 11, 2021 (2018). https://doi.org/10.3390/ma11102021

    Article  Google Scholar 

  5. Szewczyk, R.: The method of moments in Jiles-Atherton model based magnetostatic modelling of thin layers. Arch. Electr. Eng. 67, 27–35 (2018). https://doi.org/10.24425/118989

    Article  Google Scholar 

  6. Schauerte, B., Steentjes, S., Hameyer, K.: Flexible extension of hysteresis models for magnetic anisotropy. IEEE Magn. Lett. 9, 6606804 (2018). https://doi.org/10.1109/LMAG.2018.2874168

    Article  Google Scholar 

  7. Ramesh, A., Jiles, D.C., Bi, Y.: Generalization of hysteresis modeling to anisotropic materials. J. Appl. Phys. 81, 5585 (1997). https://doi.org/10.1063/1.364843

    Article  Google Scholar 

  8. Ramesh, A., Jiles, D.C., Roderik, J.: A model of anisotropic anhysteretic magnetization. IEEE Trans. Magn. 32, 4234–4236 (1999). https://doi.org/10.1109/20.539344

    Article  Google Scholar 

  9. Szewczyk, R.: Validation of the anhysteretic magnetization model for soft magnetic materials with perpendicular anisotropy. Materials 7, 5109–5116 (2014). https://doi.org/10.3390/ma7075109

    Article  Google Scholar 

  10. Gyselinck, J., Dular, P., Sadowski, N., Leite, J.V., Bastos, J.P.A.: Incorporation of a Jiles-Atherton vector hysteresis model in 2D FE magnetic field computations: application of the Newton-Raphson method. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 23, 685–693 (2004). https://doi.org/10.1108/03321640410540601

    Article  MathSciNet  MATH  Google Scholar 

  11. Chwastek, K., Szczyglowski, J.: Identification of a hysteresis model parameters with genetic algorithms. Math. Comput. Simul. 71, 206–211 (2006). https://doi.org/10.1016/j.matcom.2006.01.002

    Article  MathSciNet  MATH  Google Scholar 

  12. Biedrzycki, R., Jackiewicz, D., Szewczyk, R.: Reliability and efficiency of differential evolution based method of determination of Jiles-Atherton model parameters for X30Cr13 corrosion resisting martensitic steel. J. Autom. Mob. Robot. Intell. Syst. 8, 63 (2014). https://doi.org/10.14313/JAMRIS_4-2014/39

    Article  Google Scholar 

  13. Iyer, R.V., Krishnaprasad, P.S.: On a low-dimensional model for ferromagnetism. Nonlinear Anal. Theory Methods Appl. 61, 1447–1482 (2005). https://doi.org/10.1016/j.na.2005.01.109

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Szewczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szewczyk, R. (2020). Stability of Jiles-Atherton Anhysteretic Magnetization Curve Model for Magnetic Materials with Uniaxial Anisotropy. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2020: Towards Industry of the Future. AUTOMATION 2020. Advances in Intelligent Systems and Computing, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-40971-5_32

Download citation

Publish with us

Policies and ethics