Abstract
Globular clusters are large and dense agglomerate of stars. At variance with smaller clusters of stars, they exhibit signs of some chemical evolution. At least for this reason, they are intermediate between open clusters and massive objects such as nuclear clusters or compact galaxies. While some facts are well established, the increasing amount of observational data are revealing a complexity that has so far defied the attempts to interpret the whole data set in a simple scenario. We review this topic focusing on the main observational features of clusters in the Milky Way and its satellites. We find that most of the observational facts related to the chemical evolution in globular clusters are described as being primarily a function of the initial mass of the clusters, tuned by further dependence on the metallicity—that mainly affects specific aspects of the nucleosynthesis processes involved—and on the environment, that likely determines the possibility of independent chemical evolution of the fragments or satellites, where the clusters form. We review the impact of multiple populations on different regions of the colour–magnitude diagram and underline the constraints related to the observed abundances of lithium, to the cluster dynamics, and to the frequency of binaries in stars of different chemical composition. We then re-consider the issues related to the mass budget and the relation between globular cluster and field stars. Any successful model of globular cluster formation should explain these facts.
Similar content being viewed by others
Notes
See, however, Sect. 3.6 for the recent extension to lower ages.
For most elements, we adopt the usual spectroscopic notation, i.e., \({[X]}=\log {X_{\mathrm{star}}} -\log {X_\odot }\) for any abundance quantity X, and \(\log {\epsilon (X)} = \log {N_{{X}}/N_{\mathrm{H}}} + 12.0\) for absolute number density abundances. For helium, we use Y, that is the fraction of He in mass.
The interquartile of a distribution is the range of values including the middle 50% of the distribution, leaving out the highest and lowest quartiles.
Alternative estimates of the current masses for MC clusters are provided by other studies, e.g., by McLaughlin and van der Marel (2005), while these last authors did not list values for all the clusters considered here, whenever available the masses agree very well with those given by Mackey and Gilmore (2003a, b), but for the single case of NGC 2257.
The sample of clusters in Milone et al. (2017) may suffer from a selection bias, because only rather nearby and massive GCs have been targeted (the selection is essentially that of the ACS Survey by Sarajedini et al. 2007). On the other hand, these are also those GCs for which more precise data can be obtained. A similar bias can of course be present in case spectroscopy is used to define the populations fractions. It would be interesting to extend the same kind of studies to a sample fully representative of all MW GCs.
NGC 2808 has at least five different populations (Milone et al. 2015b; Carretta et al. 2015). NGC 2419, a very massive cluster with a very large apocenter distance, also shares many characteristics of the chromosome map with NGC 2808, as suggested by the very recent study by Zennaro et al. (2019). However, it is not plotted in Fig. 8, because it actually lacks an explicit classification in Type I/II classes.
It is worth noting that current models do not reproduce the correct zero-point (Cassisi et al. 2011); however, observational studies have been concentrating on differential effects, and we will limit our discussion to those in this text.
NGC 2808, the cluster showing the largest He differences, was not in the calculation, since no star below the RGB bump was observed for this cluster in that survey.
See http://basti.oa-abruzzo.inaf.it/ (Pietrinferni et al. 2004, 2006).
An example of the difficulties in deriving He abundance variations from clusters with red horizontal branch is given by a comparison of the spread in He abundances for the SMCs clusters NGC 121, NGC 339, NGC 416, and Lindsay 1 as determined from the horizontal branch by Chantereau et al. (2019), and from a pseudo-chromosome map by Lagioia et al. (2018). While the first study found variations in the He abundances as large as \(\varDelta Y=0.08\), the second one only found very tiny spreads, with the highest value being \(\varDelta Y=0.010\pm 0.003\). Chantereau et al. (2019) noticed this difference, and attributed it to the different meaning of \(\varDelta Y\) in the two studies—maximum excursion with respect to mean difference between first- and second-generation stars, although it seems quite difficult to justify a factor of almost ten difference between the two results this way. We then think that the spread in He abundances derived for red horizontal branch clusters should be taken with caution.
These calculations are restricted to those stars that have Al abundances, which comprises more than 90% of the total sample.
Note that MacLean et al. (2016) rather use the observed minima in the [Na/H] distribution to separate FG and SG stars along the AGB and the RGB comparison data set
The investigation of the Li discrepancy as measured in Pop ii stars with respect to the standard Big Bang nucleosynthesis is not discussed in this review, since our main focus is the multiple population scenarios. We refer the reader to Sbordone et al. (2010), Mucciarelli et al. (2014b), Fu et al. (2015), and references therein for a specific discussion on this topic.
Given the primordial Li scatter in NGC 104, which is unrelated to the multiple population scenarios, this GC was omitted from the present discussion.
BSS may also be produced by collision in the dense core of GCs. In that case, there should not be large chemical anomalies (Lombardi et al. 1995). However, the majority of BSS in both globular and open clusters are likely the aftermath of the evolution of primordial binaries (see, e.g., Piotto et al. 2004).
Note that the mass-budget values discussed above should be revised in this scenario because only a fraction of the massive AGB stars should contribute to nucleosynthesis. On the other hand, in this scenario the diluting material was already present in the GC since its birth.
References
Adams FC, Fatuzzo M (1996) A theory of the initial mass function for star formation in molecular clouds. Astrophys J 464:256. https://doi.org/10.1086/177318. arXiv:astro-ph/9601139
Aguilar L, Hut P, Ostriker JP (1988) On the evolution of globular cluster systems. I. Present characteristics and rate of destruction in our Galaxy. Astrophys J 335:720–747. https://doi.org/10.1086/166961
Ahumada JA, Lapasset E (2007) New catalogue of blue stragglers in open clusters. Astron Astrophys 463:789–797. https://doi.org/10.1051/0004-6361:20054590
Alves-Brito A, Yong D, Meléndez J, Vásquez S, Karakas AI (2012) CNO and F abundances in the globular cluster M 22 (NGC 6656). Astron Astrophys 540:A3. https://doi.org/10.1051/0004-6361/201118623. arXiv:1202.0797
Anthony-Twarog BJ, Laird JB, Payne D, Twarog BA (1991) Ca II H and K filter photometry on the UVBY system. I—the standard system. Astron J 101:1902–1914. https://doi.org/10.1086/115815
Armandroff TE, Da Costa GS (1991) Metallicities for old stellar systems from Ca II triplet strengths in member giants. Astron J 101:1329–1337. https://doi.org/10.1086/115769
Armosky BJ, Sneden C, Langer GE, Kraft RP (1994) Abundance trends among neutron capture elements in giants of globular clusters M5, M3, M13, M92, and M15. Astron J 108:1364–1374. https://doi.org/10.1086/117158
Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the sun. Annu Rev Astron Astrophys 47:481–522. https://doi.org/10.1146/annurev.astro.46.060407.145222. arXiv:0909.0948
Bagdonas V, Drazdauskas A, Tautvaisiene G, Smiljanic R, Chorniy Y (2018) Chemical composition of giant stars in the open cluster IC 4756. Astrophysics 615:A165. https://doi.org/10.1051/0004-6361/201832695. arXiv:1804.01975
Balsara DS, Bendinelli AJ, Tilley DA, Massari AR, Howk JC (2008) Simulating anisotropic thermal conduction in supernova remnants—II. Implications for the interstellar medium. Mon Not R Astron Soc 386:642–656. https://doi.org/10.1111/j.1365-2966.2008.13121.x. arXiv:0711.2295
Banerjee S, Kroupa P (2015) The formation of NGC 3603 young starburst cluster: ‘prompt’ hierarchical assembly or monolithic starburst? Mon Not R Astron Soc 447:728–746. https://doi.org/10.1093/mnras/stu2445. arXiv:1412.1473
Bastian N, de Mink SE (2009) The effect of stellar rotation on colour-magnitude diagrams: on the apparent presence of multiple populations in intermediate age stellar clusters. Mon Not R Astron Soc 398(1):L11–L15. https://doi.org/10.1111/j.1745-3933.2009.00696.x. arXiv:0906.1590
Bastian N, Lardo C (2015) Globular cluster mass-loss in the context of multiple populations. Mon Not R Astron Soc 453:357–364. https://doi.org/10.1093/mnras/stv1661. arXiv:1507.05634
Bastian N, Lardo C (2018) Multiple stellar populations in globular clusters. Annu Rev Astron Astrophys 56:83–136. https://doi.org/10.1146/annurev-astro-081817-051839. arXiv:1712.01286
Bastian N, Strader J (2014) Constraining globular cluster formation through studies of young massive clusters—III. A lack of gas and dust in massive stellar clusters in the LMC and SMC. Mon Not R Astron Soc 443:3594–3600. https://doi.org/10.1093/mnras/stu1407. arXiv:1407.2726
Bastian N, Lamers HJGLM, de Mink SE, Longmore SN, Goodwin SP, Gieles M (2013) Early disc accretion as the origin of abundance anomalies in globular clusters. Mon Not R Astron Soc 436:2398–2411. https://doi.org/10.1093/mnras/stt1745. arXiv:1309.3566
Bastian N, Cabrera-Ziri I, Salaris M (2015) A general abundance problem for all self-enrichment scenarios for the origin of multiple populations in globular clusters. Mon Not R Astron Soc 449:3333–3346. https://doi.org/10.1093/mnras/stv543. arXiv:1503.03071
Bastian N, Kamann S, Cabrera-Ziri I, Georgy C, Ekström S, Charbonnel C, de Juan OM, Usher C (2018) Extended main sequence turnoffs in open clusters as seen by Gaia—I. NGC 2818 and the role of stellar rotation. Mon Not R Astron Soc 480:3739–3746. https://doi.org/10.1093/mnras/sty2100. arXiv:1807.10779
Baumgardt H, Hilker M (2018) A catalogue of masses, structural parameters, and velocity dispersion profiles of 112 Milky Way globular clusters. Mon Not R Astron Soc 478:1520–1557. https://doi.org/10.1093/mnras/sty1057. arXiv:1804.08359
Baumgardt H, Makino J (2003) Dynamical evolution of star clusters in tidal fields. Mon Not R Astron Soc 340:227–246. https://doi.org/10.1046/j.1365-8711.2003.06286.x. arXiv:astro-ph/0211471
Baumgardt H, Kroupa P, Parmentier G (2008) The influence of residual gas expulsion on the evolution of the Galactic globular cluster system and the origin of the Population II halo. Mon Not R Astron Soc 384:1231–1241. https://doi.org/10.1111/j.1365-2966.2007.12811.x. arXiv:0712.1591
Baumgardt H, Parmentier G, Gieles M, Vesperini E (2010) Evidence for two populations of Galactic globular clusters from the ratio of their half-mass to Jacobi radii. Mon Not R Astron Soc 401:1832–1838. https://doi.org/10.1111/j.1365-2966.2009.15758.x. arXiv:0909.5696
Baumgardt H, Parmentier G, Anders P, Grebel EK (2013) The star cluster formation history of the LMC. Mon Not R Astron Soc 430:676–685. https://doi.org/10.1093/mnras/sts667. arXiv:1207.5576
Baumgardt H, Hilker M, Sollima A, Bellini A (2019) Mean proper motions, space orbits, and velocity dispersion profiles of Galactic globular clusters derived from Gaia DR2 data. Mon Not R Astron Soc 482:5138–5155. https://doi.org/10.1093/mnras/sty2997. arXiv:1811.01507
Beasley MA, Baugh CM, Forbes DA, Sharples RM, Frenk CS (2002) On the formation of globular cluster systems in a hierarchical Universe. Mon Not R Astron Soc 333(2):383–399. https://doi.org/10.1046/j.1365-8711.2002.05402.x. arXiv:astro-ph/0202191
Bedin LR, Piotto G, Anderson J, Cassisi S, King IR, Momany Y, Carraro G (2004) \(\omega \) Centauri: the population puzzle goes deeper. Astrophys J Lett 605:L125–L128. https://doi.org/10.1086/420847. arXiv:astro-ph/0403112
Behr BB (2003) Chemical abundances and rotation velocities of blue horizontal-branch stars in six globular clusters. Astrophys J Suppl 149:67–99. https://doi.org/10.1086/377509. arXiv:astro-ph/0307178
Behr BB, Cohen JG, McCarthy JK, Djorgovski SG (1999) Striking photospheric abundance anomalies in blue horizontal-branch stars in globular cluster M13. Astrophys J Lett 517:L135–L138. https://doi.org/10.1086/312052. arXiv:astro-ph/9903437
Behr BB, Cohen JG, McCarthy JK (2000) Rotations and abundances of blue horizontal-branch stars in globular cluster M15. Astrophys J Lett 531:L37–L40. https://doi.org/10.1086/312524. arXiv:astro-ph/0002119
Bekki K (2010) Rotation and multiple stellar population in globular clusters. Astrophys J Lett 724:L99–L103. https://doi.org/10.1088/2041-8205/724/1/L99. arXiv:1010.3841
Bekki K (2011) Secondary star formation within massive star clusters: origin of multiple stellar populations in globular clusters. Mon Not R Astron Soc 412:2241–2259. https://doi.org/10.1111/j.1365-2966.2010.18047.x. arXiv:1011.5956
Bekki K, Freeman KC (2003) Formation of \(\omega \) Centauri from an ancient nucleated dwarf galaxy in the young Galactic disc. Mon Not R Astron Soc 346:L11–L15. https://doi.org/10.1046/j.1365-2966.2003.07275.x. arXiv:astro-ph/0310348
Bekki K, Tsujimoto T (2016) Formation of anomalous globular clusters with metallicity spreads: a unified picture. Astrophys J 831:70. https://doi.org/10.3847/0004-637X/831/1/70
Bekki K, Campbell SW, Lattanzio JC, Norris JE (2007) Origin of abundance inhomogeneity in globular clusters. Mon Not R Astron Soc 377:335–351. https://doi.org/10.1111/j.1365-2966.2007.11606.x. arXiv:astro-ph/0702289
Bellazzini M, Fusi Pecci F, Messineo M, Monaco L, Rood RT (2002) Deep Hubble Space Telescope WFPC2 photometry of NGC 288. I. Binary systems and blue stragglers. Astron J 123:1509–1527. https://doi.org/10.1086/339222. arXiv:astro-ph/0112343
Bellazzini M, Ibata RA, Chapman SC, Mackey AD, Monaco L, Irwin MJ, Martin NF, Lewis GF, Dalessandro E (2008) The nucleus of the Sagittarius dSph galaxy and M54: a window on the process of galaxy nucleation. Astron J 136:1147–1170. https://doi.org/10.1088/0004-6256/136/3/1147. arXiv:0807.0105
Bellazzini M, Bragaglia A, Carretta E, Gratton RG, Lucatello S, Catanzaro G, Leone F (2012) Na-O anticorrelation and HB. IX. Kinematics of the program clusters A link between systemic rotation and HB morphology? Astron Astrophys 538:A18. https://doi.org/10.1051/0004-6361/201118056. arXiv:1111.2688
Bellini A, Vesperini E, Piotto G, Milone AP, Hong J, Anderson J, van der Marel RP, Bedin LR, Cassisi S, D’Antona F, Marino AF, Renzini A (2015) The Hubble Space Telescope UV legacy survey of galactic globular clusters: the internal kinematics of the multiple stellar populations in NGC 2808. Astrophys J Lett 810:L13. https://doi.org/10.1088/2041-8205/810/1/L13. arXiv:1508.01804
Bellini A, Milone AP, Anderson J, Marino AF, Piotto G, van der Marel RP, Bedin LR, King IR (2017) The state-of-the-art HST astro-photometric analysis of the core of \(\omega \) Centauri. III. The main sequence’s multiple populations galore. Astrophys J 844:164. https://doi.org/10.3847/1538-4357/aa7b7e. arXiv:1706.07063
Benitez N, Dupke R, Moles M, Sodre L, Cenarro J, Marin-Franch A, Taylor K, Cristobal D, Fernandez-Soto A, Mendes de Oliveira C, Cepa-Nogue J, Abramo LR, Alcaniz JS, Overzier R, Hernandez-Monteagudo C, Alfaro EJ, Kanaan A, Carvano JM, Reis RRR, Martinez Gonzalez E, Ascaso B, Ballesteros F, Xavier HS, Varela J, Ederoclite A, Vazquez Ramio H, Broadhurst T, Cypriano E, Angulo R, Diego JM, Zandivarez A, Diaz E, Melchior P, Umetsu K, Spinelli PF, Zitrin A, Coe D, Yepes G, Vielva P, Sahni V, Marcos-Caballero A, Shu Kitaura F, Maroto AL, Masip M, Tsujikawa S, Carneiro S, Gonzalez Nuevo J, Carvalho GC, Reboucas MJ, Carvalho JC, Abdalla E, Bernui A, Pigozzo C, Ferreira EGM, Chandrachani Devi N, Bengaly CAP Jr, Campista M, Amorim A, Asari NV, Bongiovanni A, Bonoli S, Bruzual G, Cardiel N, Cava A, Cid Fernandes R, Coelho P, Cortesi A, Delgado RG, Diaz Garcia L, Espinosa JMR, Galliano E, Gonzalez-Serrano JI, Falcon-Barroso J, Fritz J, Fernandes C, Gorgas J, Hoyos C, Jimenez-Teja Y, Lopez-Aguerri JA, Lopez-San Juan C, Mateus A, Molino A, Novais P, OMill A, Oteo I, Perez-Gonzalez PG, Poggianti B, Proctor R, Ricciardelli E, Sanchez-Blazquez P, Storchi-Bergmann T, Telles E, Schoennell W, Trujillo N, Vazdekis A, Viironen K, Daflon S, Aparicio-Villegas T, Rocha D, Ribeiro T, Borges M, Martins SL, Marcolino W, Martinez-Delgado D, Perez-Torres MA, Siffert BB, Calvao MO, Sako M, Kessler R, Alvarez-Candal A, De Pra M, Roig F, Lazzaro D, Gorosabel J, Lopes de Oliveira R, Lima-Neto GB, Irwin J, Liu JF, Alvarez E, Balmes I, Chueca S, Costa-Duarte MV, da Costa AA, Dantas MLL, Diaz AY, Fabregat J, Ferrari F, Gavela B, Gracia SG, Gruel N, Gutierrez JLL, Guzman R, Hernandez-Fernandez JD, Herranz D, Hurtado-Gil L, Jablonsky F, Laporte R, Le Tiran LL, Licandro J, Lima M, Martin E, Martinez V, Montero JJC, Penteado P, Pereira CB, Peris V, Quilis V, Sanchez-Portal M, Soja AC, Solano E, Torra J, Valdivielso L (2014) J-PAS: The Javalambre-Physics of the Accelerated Universe Astrophysical Survey. arXiv e-prints arXiv:1403.5237
Bertelli G, Nasi E, Girardi L, Chiosi C, Zoccali M, Gallart C (2003) Testing intermediate-age stellar evolution models with VLT photometry of large magellanic cloud clusters. III. Padova results. Astrophys J 125:770–784. https://doi.org/10.1086/345961. arXiv:astro-ph/0211169
Beuther H, Churchwell EB, McKee CF, Tan JC (2007) The formation of massive stars. Protostars and planets V, pp 165–180. arXiv:astro-ph/0602012
Bloecker T (1995) Stellar evolution of low and intermediate-mass stars. I. Mass loss on the AGB and its consequences for stellar evolution. Astron Astrophys 297:727
Boberg OM, Friel ED, Vesperini E (2015) Chemical abundances in NGC 5053: a very metal-poor and dynamically complex globular cluster. Astrophys J 804:109. https://doi.org/10.1088/0004-637X/804/2/109. arXiv:1504.01791
Boberg OM, Friel ED, Vesperini E (2016) Chemical abundances in NGC 5024 (M53): a mostly first generation globular cluster. Astrophys J 824:5. https://doi.org/10.3847/0004-637X/824/1/5
Böcek Topcu G, Afşar M, Sneden C (2016) The chemical compositions and evolutionary status of red giants in the open cluster NGC 6940. Mon Not R Astron Soc 463:580–597. https://doi.org/10.1093/mnras/stw1974
Bodenheimer P, Tenorio-Tagle G, Yorke HW (1979) The gas dynamics of H II regions. II. Two-dimensional axisymmetric calculations. Astrophys J 233:85–96. https://doi.org/10.1086/157368. arXiv:1906.09137
Bolte M (1992) CCD photometry in the globular cluster NGC 288. I. Blue stragglers and main-sequence binary stars. Astrophys J Suppl 82:145. https://doi.org/10.1086/191712
Bonatto C, Chies-Santos AL, Coelho PRT, Varela J, Larsen SS, Javier Cenarro A, San Roman I, Marín-Franch A, Mendes de Oliveira C, Molino A, Ederoclite A, Cortesi A, López-Sanjuan C, Cristóbal-Hornillos D, Vázquez Ramió H, Sodré L, Sampedro L, Costa-Duarte MV, Novais PM, Dupke R, Overzier RA, Ribeiro T, Santos WA, Schoennell W (2019) J-PLUS: a wide-field multi-band study of the M 15 globular cluster. Evidence of multiple stellar populations in the RGB. Astron Astrophys 622:A179. https://doi.org/10.1051/0004-6361/201732441. arXiv:1804.03966
Bonnell IA, Bate MR, Vine SG (2003) The hierarchical formation of a stellar cluster. Mon Not R Astron Soc 343:413–418. https://doi.org/10.1046/j.1365-8711.2003.06687.x. arXiv:astro-ph/0305082
Bonnell IA, Smith RJ, Clark PC, Bate MR (2011) The efficiency of star formation in clustered and distributed regions. Mon Not R Astron Soc 410:2339–2346. https://doi.org/10.1111/j.1365-2966.2010.17603.x. arXiv:1009.1152
Bragaglia A, Carretta E, Gratton R, D’Orazi V, Cassisi S, Lucatello S (2010a) Helium in first and second-generation stars in globular clusters from spectroscopy of red giants. Astron Astrophys 519:A60. https://doi.org/10.1051/0004-6361/201014702. arXiv:1005.2659
Bragaglia A, Carretta E, Gratton RG, Lucatello S, Milone A, Piotto G, D’Orazi V, Cassisi S, Sneden C, Bedin LR (2010b) X-shooter observations of main-sequence stars in the globular cluster NGC 2808: first chemical tagging of a He-normal and a He-rich dwarf. Astrophys J Lett 720:L41–L45. https://doi.org/10.1088/2041-8205/720/1/L41. arXiv:1007.5299
Bragaglia A, Gratton RG, Carretta E, D’Orazi V, Sneden C, Lucatello S (2012) Searching for multiple stellar populations in the massive, old open cluster Berkeley 39. Astron Astrophys 548:A122. https://doi.org/10.1051/0004-6361/201220366. arXiv:1211.1142
Bragaglia A, Sneden C, Carretta E, Gratton RG, Lucatello S, Bernath PF, Brooke JSA, Ram RS (2014) Searching for chemical signatures of multiple stellar populations in the old, massive open cluster NGC 6791. Astrophys J 796:68. https://doi.org/10.1088/0004-637X/796/1/68. arXiv:1409.8283
Bragaglia A, Carretta E, Sollima A, Donati P, D’Orazi V, Gratton RG, Lucatello S, Sneden C (2015) NGC 6139: a normal massive globular cluster, or a first-generation dominated cluster? Clues from the light elements. Astron Astrophys 583:A69. https://doi.org/10.1051/0004-6361/201526592. arXiv:1507.07562
Bragaglia A, Carretta E, D’Orazi V, Sollima A, Donati P, Gratton RG, Lucatello S (2017) NGC 6535: the lowest mass Milky Way globular cluster with a Na–O anti-correlation? Cluster mass and age in the multiple population context. Astron Astrophys 607:A44. https://doi.org/10.1051/0004-6361/201731526. arXiv:1708.07705
Bragaglia A, Fu X, Mucciarelli A, Andreuzzi G, Donati P (2018) The chemical composition of the oldest nearby open cluster Ruprecht 147. Astron Astrophys 619:A176. https://doi.org/10.1051/0004-6361/201833888. arXiv:1809.06868
Briley MM, Cohen JG (2001) Calibration of the CH and CN variations among main-sequence stars in M71 and in M13. Astron J 122:242–247. https://doi.org/10.1086/321115. arXiv:astro-ph/0104099
Briley MM, Cohen JG, Stetson PB (2004) The chemical inhomogeneity of faint M13 stars: carbon and nitrogen abundances. Astron J 127:1579–1587. https://doi.org/10.1086/382100. arXiv:astro-ph/0312315
Brodie JP, Strader J (2006) Extragalactic globular clusters and galaxy formation. Annu Rev Astron Astrophys 44:193–267. https://doi.org/10.1146/annurev.astro.44.051905.092441. arXiv:astro-ph/0602601
Çalışkan Ş, Christlieb N, Grebel EK (2012) Abundance analysis of the outer halo globular cluster Palomar 14. Astron Astrophys 537:A83. https://doi.org/10.1051/0004-6361/201016355. arXiv:1110.5151
Cabrera-Ziri I, Bastian N, Longmore SN, Brogan C, Hollyhead K, Larsen SS, Whitmore B, Johnson K, Chandar R, Henshaw JD, Davies B, Hibbard JE (2015) Constraining globular cluster formation through studies of young massive clusters—V. ALMA observations of clusters in the Antennae. Mon Not R Astron Soc 448:2224–2231. https://doi.org/10.1093/mnras/stv163. arXiv:1501.05657
Cabrera-Ziri I, Lardo C, Mucciarelli A (2019) Constant light element abundances suggest that the extended P1 in NGC 2808 is not a consequence of CNO-cycle nucleosynthesis. Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stz707. arXiv:1903.03621
Calura F, Few CG, Romano D, D’Ercole A (2015) Feedback from massive stars and gas expulsion from proto-globular clusters. Astrophys J Lett 814:L14. https://doi.org/10.1088/2041-8205/814/1/L14. arXiv:1511.03277
Calura F, D’Ercole A, Vesperini E, Vanzella E, Sollima A (2019) Formation of second-generation stars in globular clusters. Mon Not R Astron Soc 489:3269–3284. https://doi.org/10.1093/mnras/stz2055. arXiv:1906.09137
Cameron AGW, Fowler WA (1971) Lithium and the s-process in red-giant stars. Astrophys J 164:111. https://doi.org/10.1086/150821
Campbell SW, Lattanzio JC, Elliott LM (2006) Are there radical cyanogen abundance differences between galactic globular cluster RGB and AGB stars? Mem Soc Astron Ital 77:864. arXiv:astro-ph/0603779
Campbell SW, D’Orazi V, Yong D, Constantino TN, Lattanzio JC, Stancliffe RJ, Angelou GC, Wylie-de Boer EC, Grundahl F (2013) Sodium content as a predictor of the advanced evolution of globular cluster stars. Nature 498:198–200. https://doi.org/10.1038/nature12191. arXiv:1305.7090
Campbell SW, MacLean BT, D’Orazi V, Casagrande L, de Silva GM, Yong D, Cottrell PL, Lattanzio JC (2017) NGC 6752 AGB stars revisited. I. Improved AGB temperatures remove apparent overionisation of Fe I. Astron Astrophys 605:A98. https://doi.org/10.1051/0004-6361/201731101. arXiv:1707.02840
Cantat-Gaudin T, Vallenari A, Zaggia S, Bragaglia A, Sordo R, Drew JE, Eisloeffel J, Farnhill HJ, Gonzalez-Solares E, Greimel R, Irwin MJ, Kupcu-Yoldas A, Jordi C, Blomme R, Sampedro L, Costado MT, Alfaro E, Smiljanic R, Magrini L, Donati P, Friel ED, Jacobson H, Abbas U, Hatzidimitriou D, Spagna A, Vecchiato A, Balaguer-Nunez L, Lardo C, Tosi M, Pancino E, Klutsch A, Tautvaisiene G, Drazdauskas A, Puzeras E, Jiménez-Esteban F, Maiorca E, Geisler D, San Roman I, Villanova S, Gilmore G, Randich S, Bensby T, Flaccomio E, Lanzafame A, Recio-Blanco A, Damiani F, Hourihane A, Jofré P, de Laverny P, Masseron T, Morbidelli L, Prisinzano L, Sacco GG, Sbordone L, Worley CC (2014) The Gaia-ESO Survey: Stellar content and elemental abundances in the massive cluster NGC 6705. Astron Astrophys 569:A17. https://doi.org/10.1051/0004-6361/201423851. arXiv:1407.1510
Carballo-Bello JA, Sollima A, Martínez-Delgado D, Pila-Díez B, Leaman R, Fliri J, Muñoz RR, Corral-Santana JM (2014) A search for stellar tidal debris of defunct dwarf galaxies around globular clusters in the inner Galactic halo. Mon Not R Astron Soc 445:2971–2993. https://doi.org/10.1093/mnras/stu1949. arXiv:1409.7390
Carretta E (2006) Abundances in Red Giant Stars of NGC 2808 and correlations between chemical anomalies and global parameters in globular clusters. Astron J 131:1766–1783. https://doi.org/10.1086/499565. arXiv:astro-ph/0511144
Carretta E (2014) Three discrete groups with homogeneous chemistry along the Red Giant Branch in the globular cluster NGC 2808. Astrophys J Lett 795:L28. https://doi.org/10.1088/2041-8205/795/2/L28. arXiv:1410.3476
Carretta E (2015) Five groups of red giants with distinct chemical composition in the globular cluster NGC 2808. Astrophys J 810:148. https://doi.org/10.1088/0004-637X/810/2/148. arXiv:1507.07553
Carretta E (2016) Spectroscopic evidence of multiple stellar populations in globular clusters. arXiv e-prints. arXiv:1611.04728
Carretta E (2019) Empirical estimates of the Na–O anti-correlation in 95 Galactic globular clusters. Astron Astrophys 624:A24. https://doi.org/10.1051/0004-6361/201935110. arXiv:1903.04494
Carretta E, Bragaglia A (2018) Observing multiple populations in globular clusters with the ESO archive: NGC 6388 reloaded. Astron Astrophys 614:A109. https://doi.org/10.1051/0004-6361/201832660. arXiv:1802.06787
Carretta E, Bragaglia A, Cacciari C, Rossetti E (2003) Proton capture elements in the globular cluster NGC 2808. I. First detection of large variations in sodium abundances along the Red Giant Branch. Astron Astrophys 410:143–154. https://doi.org/10.1051/0004-6361:20031315. arXiv:astro-ph/0309021
Carretta E, Bragaglia A, Cacciari C (2004) Star-to-Star Na and O abundance variations along the Red Giant Branch in NGC 2808. Astrophys J Lett 610:L25–L28. https://doi.org/10.1086/423034. arXiv:astro-ph/0406119
Carretta E, Gratton RG, Lucatello S, Bragaglia A, Bonifacio P (2005) Abundances of C, N, O in slightly evolved stars in the globular clusters NGC 6397, NGC 6752 and 47 Tuc. Astron Astrophys 433:597–611. https://doi.org/10.1051/0004-6361:20041892. arXiv:astro-ph/0411241
Carretta E, Bragaglia A, Gratton RG, Leone F, Recio-Blanco A, Lucatello S (2006) Na–O anticorrelation and HB. I. The Na–O anticorrelation in NGC 2808. Astron Astrophys 450:523–533. https://doi.org/10.1051/0004-6361:20054369. arXiv:astro-ph/0511833
Carretta E, Bragaglia A, Gratton RG, Lucatello S, Momany Y (2007) Na–O anticorrelation and horizontal branches. II. The Na–O anticorrelation in the globular cluster NGC 6752. Astron Astrophys 464:927–937. https://doi.org/10.1051/0004-6361:20065208. arXiv:astro-ph/0701174
Carretta E, Bragaglia A, Gratton R, D’Orazi V, Lucatello S (2009a) Intrinsic iron spread and a new metallicity scale for globular clusters. Astron Astrophys 508:695–706. https://doi.org/10.1051/0004-6361/200913003. arXiv:0910.0675
Carretta E, Bragaglia A, Gratton R, Lucatello S (2009b) Na–O anticorrelation and HB. VIII. Proton-capture elements and metallicities in 17 globular clusters from UVES spectra. Astron Astrophys 505:139–155. https://doi.org/10.1051/0004-6361/200912097. arXiv:0909.2941
Carretta E, Bragaglia A, Gratton RG, Lucatello S, Catanzaro G, Leone F, Bellazzini M, Claudi R, D’Orazi V, Momany Y, Ortolani S, Pancino E, Piotto G, Recio-Blanco A, Sabbi E (2009c) Na–O anticorrelation and HB. VII. The chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra. Astron Astrophys 505:117–138. https://doi.org/10.1051/0004-6361/200912096. arXiv:0909.2938
Carretta E, Bragaglia A, Gratton RG, Lucatello S, Bellazzini M, Catanzaro G, Leone F, Momany Y, Piotto G, D’Orazi V (2010a) Detailed abundances of a large sample of giant stars in M 54 and in the Sagittarius nucleus. Astron Astrophys 520:A95. https://doi.org/10.1051/0004-6361/201014924. arXiv:1006.5866
Carretta E, Bragaglia A, Gratton RG, Lucatello S, Bellazzini M, Catanzaro G, Leone F, Momany Y, Piotto G, D’Orazi V (2010b) M54 + Sagittarius = \(\omega \) Centauri. Astrophys J Lett 714:L7–L11. https://doi.org/10.1088/2041-8205/714/1/L7. arXiv:1002.1963
Carretta E, Bragaglia A, Gratton RG, Recio-Blanco A, Lucatello S, D’Orazi V, Cassisi S (2010c) Properties of stellar generations in globular clusters and relations with global parameters. Astron Astrophys 516:A55. https://doi.org/10.1051/0004-6361/200913451. arXiv:1003.1723
Carretta E, Bragaglia A, Gratton R, D’Orazi V, Lucatello S (2011a) A Strömgren view of the multiple populations in globular clusters. Astron Astrophys 535:A121. https://doi.org/10.1051/0004-6361/201117180. arXiv:1109.3199
Carretta E, Lucatello S, Gratton RG, Bragaglia A, D’Orazi V (2011b) Multiple stellar populations in the globular cluster NGC 1851. Astron Astrophys 533:A69. https://doi.org/10.1051/0004-6361/201117269. arXiv:1106.3174
Carretta E, Bragaglia A, Gratton RG, Lucatello S, D’Orazi V (2012) Chemical tagging of three distinct populations of red giants in the globular cluster NGC 6752. Astrophys J Lett 750:L14. https://doi.org/10.1088/2041-8205/750/1/L14. arXiv:1204.0259
Carretta E, Bragaglia A, Gratton RG, Lucatello S, D’Orazi V, Bellazzini M, Catanzaro G, Leone F, Momany Y, Sollima A (2013a) NGC 362: another globular cluster with a split red giant branch. Astron Astrophys 557:A138. https://doi.org/10.1051/0004-6361/201321905. arXiv:1307.4085
Carretta E, Gratton RG, Bragaglia A, D’Orazi V, Lucatello S, Sollima A, Sneden C (2013b) Potassium in globular cluster stars: comparing normal clusters to the peculiar cluster NGC 2419. Astrophys J 769:40. https://doi.org/10.1088/0004-637X/769/1/40. arXiv:1303.4740
Carretta E, Bragaglia A, Gratton RG, D’Orazi V, Lucatello S, Sollima A (2014) Terzan 8: a Sagittarius-flavoured globular cluster. Astron Astrophys 561:A87. https://doi.org/10.1051/0004-6361/201322676. arXiv:1311.2589
Carretta E, Bragaglia A, Gratton RG, D’Orazi V, Lucatello S, Sollima A, Momany Y, Catanzaro G, Leone F (2015) The normal chemistry of multiple stellar populations in the dense globular cluster NGC 6093 (M 80). Astron Astrophys 578:A116. https://doi.org/10.1051/0004-6361/201525951. arXiv:1503.03074
Carretta E, Bragaglia A, Lucatello S, D’Orazi V, Gratton RG, Donati P, Sollima A, Sneden C (2017) Chemical characterisation of the globular cluster NGC 5634 associated to the Sagittarius dwarf spheroidal galaxy. Astron Astrophys 600:A118. https://doi.org/10.1051/0004-6361/201630004. arXiv:1701.03116
Carretta E, Bragaglia A, Lucatello S, Gratton RG, D’Orazi V, Sollima A (2018) Aluminium abundances in five discrete stellar populations of the globular cluster NGC 2808. Astron Astrophys 615:A17. https://doi.org/10.1051/0004-6361/201732324. arXiv:1801.09689
Cassisi S, Salaris M (1997) A critical investigation on the discrepancy between the observational and the theoretical red giant luminosity function ‘bump’. Mon Not R Astron Soc 285(3):593–603. https://doi.org/10.1093/mnras/285.3.593. arXiv:astro-ph/9702029
Cassisi S, Marín-Franch A, Salaris M, Aparicio A, Monelli M, Pietrinferni A (2011) The magnitude difference between the main sequence turn off and the red giant branch bump in Galactic globular clusters. Astron Astrophys 527:A59. https://doi.org/10.1051/0004-6361/201016066. arXiv:1012.0419
Cassisi S, Salaris M, Pietrinferni A, Vink JS, Monelli M (2014) On the missing second generation AGB stars in NGC 6752. Astron Astrophys 571:A81. https://doi.org/10.1051/0004-6361/201424540. arXiv:1410.3599
Cassisi S, Salaris M, Pietrinferni A, Hyder D (2017) On the determination of the He abundance distribution in globular clusters from the width of the main sequence. Mon Not R Astron Soc 464:2341–2348. https://doi.org/10.1093/mnras/stw2579. arXiv:1610.01755
Catelan M (2009) Horizontal branch stars: the interplay between observations and theory, and insights into the formation of the Galaxy. Astrophys Space Sci 320:261–309. https://doi.org/10.1007/s10509-009-9987-8. arXiv:astro-ph/0507464
Chabrier G, Hennebelle P, Charlot S (2014) Variations of the Stellar initial mass function in the progenitors of massive early-type Galaxies and in extreme starburst environments. Astrophys J 796:75. https://doi.org/10.1088/0004-637X/796/2/75. arXiv:1409.8466
Chantereau W, Salaris M, Bastian N, Martocchia S (2019) Helium enrichment in intermediate-age Magellanic Clouds clusters: towards an ubiquity of multiple stellar populations? Mon Not R Astron Soc 484:5236–5244. https://doi.org/10.1093/mnras/stz378. arXiv:1902.01806
Charbonnel C, Chantereau W, Krause M, Primas F, Wang Y (2014) Are there any first-generation stars in globular clusters today? Astron Astrophys 569:L6. https://doi.org/10.1051/0004-6361/201424804. arXiv:1410.3967
Cohen JG (2004) Palomar 12 as a part of the Sagittarius stream: the evidence from abundance ratios. Astron J 127:1545–1554. https://doi.org/10.1086/382104. arXiv:astro-ph/0311187
Cohen JG, Briley MM, Stetson PB (2002) Carbon and nitrogen abundances in stars at the base of the red giant branch in M5. Astron J 123:2525–2540. https://doi.org/10.1086/340179. arXiv:astro-ph/0112199
Cordero MJ, Pilachowski CA, Johnson CI, McDonald I, Zijlstra AA, Simmerer J (2014) Detailed abundances for a large sample of Giant Stars in the Globular Cluster 47 Tucanae (NGC 104). Astrophys J 780:94. https://doi.org/10.1088/0004-637X/780/1/94. arXiv:1311.1541
Cordero MJ, Hénault-Brunet V, Pilachowski CA, Balbinot E, Johnson CI, Varri AL (2017) Differences in the rotational properties of multiple stellar populations in M13: a faster rotation for the ‘extreme’ chemical subpopulation. Mon Not R Astron Soc 465:3515–3535. https://doi.org/10.1093/mnras/stw2812. arXiv:1610.09374
Cowan JJ, Sneden C, Lawler JE, Aprahamian A, Wiescher M, Langanke K, Martínez-Pinedo G, Thielemann FK (2019) Making the Heaviest Elements in the Universe: A Review of the Rapid Neutron Capture Process. arXiv e-prints. arXiv:1901.01410
Cristallo S, Straniero O, Gallino R, Piersanti L, Domínguez I, Lederer MT (2009) Evolution, nucleosynthesis, and yields of low-mass asymptotic giant branch stars at different metallicities. Astrophys J 696:797–820. https://doi.org/10.1088/0004-637X/696/1/797. arXiv:0902.0243
Cristallo S, Straniero O, Piersanti L, Gobrecht D (2015) Evolution, nucleosynthesis, and yields of AGB stars at different metallicities. III. Intermediate-mass models, revised low-mass models, and the ph-FRUITY interface. Astrophys J Suppl Ser 219(2):40. https://doi.org/10.1088/0067-0049/219/2/40. arXiv:1507.07338
Cummings JD, Kalirai JS, Tremblay PE, Ramirez-Ruiz E, Choi J (2018) The white dwarf initial-final mass relation for progenitor stars from 0.85 to 7.5 M \(_{\odot }\). Astrophys J 866:21. https://doi.org/10.3847/1538-4357/aadfd6. arXiv:1809.01673
Cunha K, Smith VV, Johnson JA, Bergemann M, Mészáros S, Shetrone MD, Souto D, Allende Prieto C, Schiavon RP, Frinchaboy P, Zasowski G, Bizyaev D, Holtzman J, García Pérez AE, Majewski SR, Nidever D, Beers T, Carrera R, Geisler D, Gunn J, Hearty F, Ivans I, Martell S, Pinsonneault M, Schneider DP, Sobeck J, Stello D, Stassun KG, Skrutskie M, Wilson JC (2015) Sodium and oxygen abundances in the open cluster NGC 6791 from APOGEE H-band spectroscopy. Astrophys J Lett 798:L41. https://doi.org/10.1088/2041-8205/798/2/L41. arXiv:1411.2034
Da Costa GS (2016) The Ca II triplet in red giant spectra: [Fe/H] determinations and the role of [Ca/Fe]. Mon Not R Astron Soc 455:199–206. https://doi.org/10.1093/mnras/stv2315. arXiv:1510.00766
Da Costa GS, Held EV, Saviane I (2014) NGC 5824: a luminous outer halo globular cluster with an intrinsic abundance spread. Mon Not R Astron Soc 438:3507–3520. https://doi.org/10.1093/mnras/stt2467. arXiv:1312.5796
Dabringhausen J, Hilker M, Kroupa P (2008) From star clusters to dwarf galaxies: the properties of dynamically hot stellar systems. Mon Not R Astron Soc 386:864–886. https://doi.org/10.1111/j.1365-2966.2008.13065.x. arXiv:0802.0703
Dale JE, Bonnell I (2011) Ionizing feedback from massive stars in massive clusters: fake bubbles and untriggered star formation. Mon Not R Astron Soc 414:321–328. https://doi.org/10.1111/j.1365-2966.2011.18392.x. arXiv:1103.1532
Dalessandro E, Salaris M, Ferraro FR, Cassisi S, Lanzoni B, Rood RT, Fusi Pecci F, Sabbi E (2011) The peculiar horizontal branch of NGC 2808. Mon Not R Astron Soc 410:694–704. https://doi.org/10.1111/j.1365-2966.2010.17479.x. arXiv:1008.4478
Dalessandro E, Salaris M, Ferraro FR, Mucciarelli A, Cassisi S (2013) The horizontal branch in the UV colour-magnitude diagrams—II. The case of M3, M13 and M79. Mon Not R Astron Soc 430:459–471. https://doi.org/10.1093/mnras/sts644. arXiv:1212.4419
Dalessandro E, Massari D, Bellazzini M, Miocchi P, Mucciarelli A, Salaris M, Cassisi S, Ferraro FR, Lanzoni B (2014) First evidence of fully spatially mixed first and second generations in globular clusters: the case of NGC 6362. Astrophys J Lett 791:L4. https://doi.org/10.1088/2041-8205/791/1/L4. arXiv:1407.0484
Dalessandro E, Lapenna E, Mucciarelli A, Origlia L, Ferraro FR, Lanzoni B (2016) Multiple populations in the old and massive small magellanic cloud globular cluster NGC 121. Astrophys J 829:77. https://doi.org/10.3847/0004-637X/829/2/77. arXiv:1607.05736
Dalessandro E, Cadelano M, Vesperini E, Salaris M, Ferraro FR, Lanzoni B, Raso S, Hong J, Webb JJ, Zocchi A (2018a) The peculiar radial distribution of multiple populations in the massive globular cluster M80. Astrophys J 859:15. https://doi.org/10.3847/1538-4357/aabb56. arXiv:1804.03222
Dalessandro E, Lardo C, Cadelano M, Saracino S, Bastian N, Mucciarelli A, Salaris M, Stetson P, Pancino E (2018b) IC 4499 revised: spectro-photometric evidence of small light-element variations. Astron Astrophys 618:A131. https://doi.org/10.1051/0004-6361/201833650. arXiv:1807.07618
Dalessandro E, Mucciarelli A, Bellazzini M, Sollima A, Vesperini E, Hong J, Hénault-Brunet V, Ferraro FR, Ibata R, Lanzoni B, Massari D, Salaris M (2018c) The unexpected kinematics of multiple populations in NGC 6362: do binaries play a role? Astrophys J 864:33. https://doi.org/10.3847/1538-4357/aad4b3. arXiv:1807.07918
D’Antona F, Caloi V (2004) The early evolution of globular clusters: the case of NGC 2808. Astrophys J 611:871–880. https://doi.org/10.1086/422334. arXiv:astro-ph/0405016
D’Antona F, Caloi V, Montalbán J, Ventura P, Gratton R (2002) Helium variation due to self-pollution among Globular Cluster stars. Consequences on the horizontal branch morphology. Astron Astrophys 395:69–75. https://doi.org/10.1051/0004-6361:20021220. arXiv:astro-ph/0209331
D’Antona F, Bellazzini M, Caloi V, Pecci FF, Galleti S, Rood RT (2005) A helium spread among the main-sequence stars in NGC 2808. Astrophys J 631:868–878. https://doi.org/10.1086/431968. arXiv:astro-ph/0505347
D’Antona F, D’Ercole A, Carini R, Vesperini E, Ventura P (2012) Models for the lithium abundances of multiple populations in globular clusters and the possible role of the big bang lithium. Mon Not R Astron Soc 426:1710–1719. https://doi.org/10.1111/j.1365-2966.2012.21663.x. arXiv:1207.1544
D’Antona F, Vesperini E, D’Ercole A, Ventura P, Milone AP, Marino AF, Tailo M (2016) A single model for the variety of multiple-population formation(s) in globular clusters: a temporal sequence. Mon Not R Astron Soc 458:2122–2139. https://doi.org/10.1093/mnras/stw387. arXiv:1602.05412
D’Antona F, Milone AP, Tailo M, Ventura P, Vesperini E, di Criscienzo M (2017) Stars caught in the braking stage in young Magellanic Cloud clusters. Nat Astron 1:0186. https://doi.org/10.1038/s41550-017-0186. arXiv:1707.07711
Davies MB, Piotto G, de Angeli F (2004) Blue straggler production in globular clusters. Mon Not R Astron Soc 349:129–134. https://doi.org/10.1111/j.1365-2966.2004.07474.x. arXiv:astro-ph/0401502
de Marchi F, de Angeli F, Piotto G, Carraro G, Davies MB (2006) Search and analysis of blue straggler stars in open clusters. Astron Astrophys 459:489–497. https://doi.org/10.1051/0004-6361:20064898. arXiv:astro-ph/0608464
de Mink SE, Pols OR, Langer N, Izzard RG (2009) Massive binaries as the source of abundance anomalies in globular clusters. Astron Astrophys 507:L1–L4. https://doi.org/10.1051/0004-6361/200913205. arXiv:0910.1086
de Silva GM, Gibson BK, Lattanzio J, Asplund M (2009) On and Na abundance patterns in open clusters of the Galactic disk. Astron Astrophys 500:L25–L28. https://doi.org/10.1051/0004-6361/200912279. arXiv:0905.4354
Decressin T, Meynet G, Charbonnel C, Prantzos N, Ekström S (2007) Fast rotating massive stars and the origin of the abundance patterns in galactic globular clusters. Astron Astrophys 464:1029–1044. https://doi.org/10.1051/0004-6361:20066013. arXiv:astro-ph/0611379
Denisenkov PA, Denisenkova SN (1989) Possible explanation of the correlation between nitrogen and sodium over abundances for red giants in globular clusters. Astron Tsirkulyar 1538:11
D’Ercole A, Vesperini E, D’Antona F, McMillan SLW, Recchi S (2008) Formation and dynamical evolution of multiple stellar generations in globular clusters. Mon Not R Astron Soc 391(2):825–843. https://doi.org/10.1111/j.1365-2966.2008.13915.x. arXiv:0809.1438
D’Ercole A, Vesperini E, D’Antona F, McMillan SLW, Recchi S (2008) Formation and dynamical evolution of multiple stellar generations in globular clusters. Mon Not R Astron Soc 391:825–843. https://doi.org/10.1111/j.1365-2966.2008.13915.x. arXiv:0809.1438
D’Ercole A, D’Antona F, Ventura P, Vesperini E, McMillan SLW (2010) Abundance patterns of multiple populations in globular clusters: a chemical evolution model based on yields from AGB ejecta. Mon Not R Astron Soc 407(2):854–869. https://doi.org/10.1111/j.1365-2966.2010.16996.x. arXiv:1005.1892
D’Ercole A, D’Antona F, Vesperini E (2011) Formation of multiple populations in globular clusters: constraints on the dilution by pristine gas. Mon Not R Astron Soc 415:1304–1309. https://doi.org/10.1111/j.1365-2966.2011.18776.x. arXiv:1103.4715
D’Ercole A, D’Antona F, Carini R, Vesperini E, Ventura P (2012) The role of super-asymptotic giant branch ejecta in the abundance patterns of multiple populations in globular clusters. Mon Not R Astron Soc 423(2):1521–1533. https://doi.org/10.1111/j.1365-2966.2012.20974.x. arXiv:1203.4992
D’Ercole A, D’Antona F, Vesperini E (2016) Accretion of pristine gas and dilution during the formation of multiple-population globular clusters. Mon Not R Astron Soc 461:4088–4098. https://doi.org/10.1093/mnras/stw1583. arXiv:1607.00951
di Criscienzo M, D’Antona F, Ventura P (2010) A detailed study of the main sequence of the globular cluster NGC 6397: can we derive constraints on the existence of multiple populations? Astron Astrophys 511:A70. https://doi.org/10.1051/0004-6361/200912516. arXiv:0912.3150
Dias B, Barbuy B, Saviane I, Held EV, Da Costa GS, Ortolani S, Gullieuszik M, Vásquez S (2016) FORS2/VLT survey of Milky Way globular clusters. II. Fe and Mg abundances of 51 Milky Way globular clusters on a homogeneous scale. Astron Astrophys 590:A9. https://doi.org/10.1051/0004-6361/201526765. arXiv:1603.02672
Dobrovolskas V, Kučinskas A, Bonifacio P, Korotin SA, Steffen M, Sbordone L, Caffau E, Ludwig HG, Royer F, Prakapavičius D (2014) Abundances of lithium, oxygen, and sodium in the turn-off stars of Galactic globular cluster 47 Tucanae. Astron Astrophys 565:A121. https://doi.org/10.1051/0004-6361/201322868. arXiv:1311.1072
Doherty CL, Gil-Pons P, Lau HHB, Lattanzio JC, Siess L, Campbell SW (2014) Super and massive AGB stars—III. Nucleosynthesis in metal-poor and very metal-poor stars—Z = 0.001 and 0.0001. Mon Not R Astron Soc 441:582–598. https://doi.org/10.1093/mnras/stu571. arXiv:1403.5054
Donati P, Cantat Gaudin T, Bragaglia A, Friel E, Magrini L, Smiljanic R, Vallenari A, Tosi M, Sordo R, Tautvaisiene G, Blanco-Cuaresma S, Costado MT, Geisler D, Klutsch A, Mowlavi N, Muñoz C, San Roman I, Zaggia S, Gilmore G, Randich S, Bensby T, Flaccomio E, Koposov SE, Korn AJ, Pancino E, Recio-Blanco A, Franciosini E, de Laverny P, Lewis J, Morbidelli L, Prisinzano L, Sacco G, Worley CC, Hourihane A, Jofré P, Lardo C, Maiorca E (2014) The Gaia-ESO Survey: reevaluation of the parameters of the open cluster Trumpler 20 using photometry and spectroscopy. Astron Astrophys 561:A94. https://doi.org/10.1051/0004-6361/201322911. arXiv:1312.3925
D’Orazi V, Marino AF (2010) Lithium abundances in red giants of M4: evidence for asymptotic giant branch star pollution in globular clusters? Astrophys J Lett 716:L166–L169. https://doi.org/10.1088/2041-8205/716/2/L166. arXiv:1005.3376
D’Orazi V, Gratton R, Lucatello S, Carretta E, Bragaglia A, Marino AF (2010a) Ba stars and other binaries in first and second generation stars in globular clusters. Astrophys J Lett 719:L213–L217. https://doi.org/10.1088/2041-8205/719/2/L213. arXiv:1007.2164
D’Orazi V, Lucatello S, Gratton R, Bragaglia A, Carretta E, Shen Z, Zaggia S (2010b) Lithium and proton-capture elements in globular cluster dwarfs: the case of 47 TUC. Astrophys J Lett 713:L1–L5. https://doi.org/10.1088/2041-8205/713/1/L1. arXiv:1003.0013
D’Orazi V, Gratton RG, Pancino E, Bragaglia A, Carretta E, Lucatello S, Sneden C (2011) Chemical enrichment mechanisms in \(\omega \) Centauri: clues from neutron-capture elements. Astron Astrophys 534:A29. https://doi.org/10.1051/0004-6361/201117630. arXiv:1108.5216
D’Orazi V, Campbell SW, Lugaro M, Lattanzio JC, Pignatari M, Carretta E (2013) On the internal pollution mechanisms in the globular cluster NGC 6121 (M4): heavy-element abundances and AGB models. Mon Not R Astron Soc 433:366–381. https://doi.org/10.1093/mnras/stt728. arXiv:1304.7009
D’Orazi V, Angelou GC, Gratton RG, Lattanzio JC, Bragaglia A, Carretta E, Lucatello S, Momany Y (2014) Lithium abundances in globular cluster giants: NGC 6218 (M12) and NGC 5904 (M5). Astrophys J 791:39. https://doi.org/10.1088/0004-637X/791/1/39. arXiv:1406.5513
D’Orazi V, Gratton RG, Angelou GC, Bragaglia A, Carretta E, Lattanzio JC, Lucatello S, Momany Y, Sollima A, Beccari G (2015) Lithium abundances in globular cluster giants: NGC 1904, NGC 2808, and NGC 362. Mon Not R Astron Soc 449:4038–4047. https://doi.org/10.1093/mnras/stv612. arXiv:1503.05925
Dotter A, Sarajedini A, Anderson J, Aparicio A, Bedin LR, Chaboyer B, Majewski S, Marín-Franch A, Milone A, Paust N, Piotto G, Reid IN, Rosenberg A, Siegel M (2010) The ACS survey of galactic globular clusters. IX. Horizontal branch morphology and the second parameter phenomenon. Astrophys J 708:698–716. https://doi.org/10.1088/0004-637X/708/1/698. arXiv:0911.2469
Dotter A, Sarajedini A, Anderson J (2011) Globular clusters in the outer galactic halo: new Hubble Space Telescope/advanced camera for surveys imaging of six globular clusters and the galactic globular cluster age-metallicity relation. Astrophys J 738:74. https://doi.org/10.1088/0004-637X/738/1/74. arXiv:1106.4307
Dotter A, Milone AP, Conroy C, Marino AF, Sarajedini A (2018) Ruprecht 106: a riddle, wrapped in a mystery, inside an enigma. Astrophys J Lett 865:L10. https://doi.org/10.3847/2041-8213/aae08f. arXiv:1808.05582
Drukier GA (1996) Retention fractions for globular cluster neutron stars. Mon Not R Astron Soc 280:498–514. https://doi.org/10.1093/mnras/280.2.498. arXiv:astro-ph/9512163
Duchêne G, Lacour S, Moraux E, Goodwin S, Bouvier J (2018) Is stellar multiplicity universal? Tight stellar binaries in the Orion nebula Cluster. Mon Not R Astron Soc 478:1825–1836. https://doi.org/10.1093/mnras/sty1180. arXiv:1805.00965
Dupree AK, Avrett EH (2013) Direct evaluation of the helium abundances in Omega Centauri. Astrophys J Lett 773:L28. https://doi.org/10.1088/2041-8205/773/2/L28. arXiv:1307.5860
Dupree AK, Dotter A, Johnson CI, Marino AF, Milone AP, Bailey JI III, Crane JD, Mateo M, Olszewski EW (2017) NGC 1866: first spectroscopic detection of fast-rotating stars in a young LMC cluster. Astrophys J Lett 846:L1. https://doi.org/10.3847/2041-8213/aa85dd. arXiv:1708.03386
Elmegreen BG (2017) Globular cluster formation at high density: a model for elemental enrichment with fast recycling of massive-star debris. Astrophys J 836:80. https://doi.org/10.3847/1538-4357/836/1/80. arXiv:1701.01034
Feltzing S, Primas F, Johnson RA (2009) Stellar abundances and ages for metal-rich Milky Way globular clusters. Stellar parameters and elemental abundances for 9 HB stars in NGC 6352. Astron Astrophys 493:913–930. https://doi.org/10.1051/0004-6361:200810137. arXiv:0810.4832
Fernández-Trincado JG, Robin AC, Moreno E, Schiavon RP, García Pérez AE, Vieira K, Cunha K, Zamora O, Sneden C, Souto D, Carrera R, Johnson JA, Shetrone M, Zasowski G, García-Hernández DA, Majewski SR, Reylé C, Blanco-Cuaresma S, Martinez-Medina LA, Pérez-Villegas A, Valenzuela O, Pichardo B, Meza A, Mészáros S, Sobeck J, Geisler D, Anders F, Schultheis M, Tang B, Roman-Lopes A, Mennickent RE, Pan K, Nitschelm C, Allard F (2016) Discovery of a metal-poor field giant with a globular cluster second-generation abundance pattern. Astrophys J 833:132. https://doi.org/10.3847/1538-4357/833/2/132. arXiv:1604.01279
Fernández-Trincado JG, Zamora O, García-Hernández DA, Souto D, Dell’Agli F, Schiavon RP, Geisler D, Tang B, Villanova S, Hasselquist S, Mennickent RE, Cunha K, Shetrone M, Allende Prieto C, Vieira K, Zasowski G, Sobeck J, Hayes CR, Majewski SR, Placco VM, Beers TC, Schleicher DRG, Robin AC, Mészáros S, Masseron T, García Pérez AE, Anders F, Meza A, Alves-Brito A, Carrera R, Minniti D, Lane RR, Fernández-Alvar E, Moreno E, Pichardo B, Pérez-Villegas A, Schultheis M, Roman-Lopes A, Fuentes CE, Nitschelm C, Harding P, Bizyaev D, Pan K, Oravetz D, Simmons A, Ivans II, Blanco-Cuaresma S, Hernández J, Alonso-García J, Valenzuela O, Chanamé J (2017) Atypical Mg-poor Milky Way field stars with globular cluster second-generation-like chemical patterns. Astrophys J Lett 846:L2. https://doi.org/10.3847/2041-8213/aa8032. arXiv:1707.03108
Ferrarese L, Côté P, Dalla Bontà E, Peng EW, Merritt D, Jordán A, Blakeslee JP, Haşegan M, Mei S, Piatek S, Tonry JL, West MJ (2006) A fundamental relation between compact stellar nuclei, supermassive black holes, and their host galaxies. Astrophys J Lett 644:L21–L24. https://doi.org/10.1086/505388. arXiv:astro-ph/0603840
Ferraro FR, Mucciarelli A, Carretta E, Origlia L (2006a) On the iron content of NGC 1978 in the LMC: a metal-rich, chemically homogeneous cluster. Astrophys J Lett 645:L33–L36. https://doi.org/10.1086/506178. arXiv:astro-ph/0605646
Ferraro FR, Sabbi E, Gratton R, Piotto G, Lanzoni B, Carretta E, Rood RT, Sills A, Fusi Pecci F, Moehler S, Beccari G, Lucatello S, Compagni N (2006b) Discovery of carbon/oxygen-depleted blue straggler stars in 47 Tucanae: the chemical signature of a mass transfer formation process. Astrophys J Lett 647:L53–L56. https://doi.org/10.1086/507327. arXiv:astro-ph/0610081
Forbes DA, Bridges T (2010) Accreted versus in situ Milky Way globular clusters. Mon Not R Astron Soc 404:1203–1214. https://doi.org/10.1111/j.1365-2966.2010.16373.x. arXiv:1001.4289
Forbes DA, Lasky P, Graham AW, Spitler L (2008) Uniting old stellar systems: from globular clusters to giant ellipticals. Mon Not R Astron Soc 389:1924–1936. https://doi.org/10.1111/j.1365-2966.2008.13739.x. arXiv:0806.1090
Fregeau JM, Rasio FA (2007) Monte Carlo simulations of globular cluster evolution. IV. Direct integration of strong interactions. Astrophys J 658:1047–1061. https://doi.org/10.1086/511809. arXiv:astro-ph/0608261
Fregeau JM, Ivanova N, Rasio FA (2009) Evolution of the binary fraction in dense stellar systems. Astrophys J 707:1533–1540. https://doi.org/10.1088/0004-637X/707/2/1533. arXiv:0907.4196
Freiburghaus C, Rosswog S, Thielemann FK (1999) R-process in neutron star mergers. Astrophys J Lett 525:L121–L124. https://doi.org/10.1086/312343
Fu X, Bressan A, Molaro P, Marigo P (2015) Lithium evolution in metal-poor stars: from pre-main sequence to the Spite plateau. Mon Not R Astron Soc 452:3256–3265. https://doi.org/10.1093/mnras/stv1384. arXiv:1506.05993
Fusi Pecci F, Bellazzini M, Cacciari C, Ferraro FR (1995) The young globular clusters of the Milky Way and the local group galaxies: playing with great circles. Astron J 110:1664. https://doi.org/10.1086/117639. arXiv:astro-ph/9507065
Gaia Collaboration, Helmi A, van Leeuwen F, McMillan PJ, Massari D, Antoja T, Robin AC, Lindegren L, Bastian U, Arenou F, et al (2018) Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. Astron Astrophys 616:A12. https://doi.org/10.1051/0004-6361/201832698, arXiv:1804.09381
García-Hernández DA, Mészáros S, Monelli M, Cassisi S, Stetson PB, Zamora O, Shetrone M, Lucatello S (2015) Clear evidence for the presence of second-generation asymptotic giant branch stars in metal-poor galactic globular clusters. Astrophys J Lett 815:L4. https://doi.org/10.1088/2041-8205/815/1/L4. arXiv:1511.05714
Geisler D, Villanova S, Carraro G, Pilachowski C, Cummings J, Johnson CI, Bresolin F (2012) The unique Na: O abundance distribution in NGC 6791: the first open(?) Cluster with multiple populations. Astrophys J Lett 756:L40. https://doi.org/10.1088/2041-8205/756/2/L40. arXiv:1207.3328
Georgiev IY, Hilker M, Puzia TH, Goudfrooij P, Baumgardt H (2009) Globular cluster systems in nearby dwarf galaxies—II. Nuclear star clusters and their relation to massive Galactic globular clusters. Mon Not R Astron Soc 396:1075–1085. https://doi.org/10.1111/j.1365-2966.2009.14776.x. arXiv:0903.2857
Gieles M, Charbonnel C, Krause MGH, Hénault-Brunet V, Agertz O, Lamers HJGLM, Bastian N, Gualandris A, Zocchi A, Petts JA (2018) Concurrent formation of supermassive stars and globular clusters: implications for early self-enrichment. Mon Not R Astron Soc 478:2461–2479. https://doi.org/10.1093/mnras/sty1059. arXiv:1804.04682
Giersz M, Askar A, Wang L, Hypki A, Leveque A, Spurzem R (2019) MOCCA survey data base – I. Dissolution of tidally filling star clusters harbouring black hole subsystems. Mon Not R Astron Soc 487(2):2412–2423. https://doi.org/10.1093/mnras/stz1460. arXiv:1904.01227
Giesers B, Kamann S, Dreizler S, Husser TO, Askar A, Göttgens F, Brinchmann J, Latour M, Weilbacher PM, Wendt M, Roth MM (2019) A stellar census in globular clusters with MUSE: Binaries in NGC 3201, arXiv e-prints. arXiv:1909.04050,
Glatt K, Grebel EK, Sabbi E, Gallagher JS III, Nota A, Sirianni M, Clementini G, Tosi M, Harbeck D, Koch A, Kayser A, Da Costa G (2008) Age determination of six intermediate-age Small Magellanic Cloud star clusters with HST/ACS. Astron J 136:1703–1727. https://doi.org/10.1088/0004-6256/136/4/1703. arXiv:0807.3744
Glatt K, Grebel EK, Jordi K, Gallagher JS III, Da Costa G, Clementini G, Tosi M, Harbeck D, Nota A, Sabbi E, Sirianni M (2011) Present-day mass function of six Small Magellanic Cloud intermediate-age and old star clusters. Astron J 142:36. https://doi.org/10.1088/0004-6256/142/2/36
Goudfrooij P, Girardi L, Kozhurina-Platais V, Kalirai JS, Platais I, Puzia TH, Correnti M, Bressan A, Chandar R, Kerber L, Marigo P, Rubele S (2014) Extended main sequence turnoffs in intermediate-age star clusters: a correlation between turnoff width and early escape velocity. Astrophys J 797:35. https://doi.org/10.1088/0004-637X/797/1/35. arXiv:1410.3840
Gratton R, Sneden C, Carretta E (2004) Annu Rev Astron Astrophys 42:385–440. https://doi.org/10.1146/annurev.astro.42.053102.133945
Gratton RG, Carretta E (2010) Diluting the material forming the second generation stars in globular clusters: the contribution by unevolved stars. Astron Astrophys 521:A54. https://doi.org/10.1051/0004-6361/201014997. arXiv:1007.4894
Gratton RG, Sneden C, Carretta E, Bragaglia A (2000) Mixing along the red giant branch in metal-poor field stars. Astron Astrophys 354:169–187
Gratton RG, Bonifacio P, Bragaglia A, Carretta E, Castellani V, Centurion M, Chieffi A, Claudi R, Clementini G, D’Antona F, Desidera S, François P, Grundahl F, Lucatello S, Molaro P, Pasquini L, Sneden C, Spite F, Straniero O (2001) The O–Na and Mg–Al anticorrelations in turn-off and early subgiants in globular clusters. Astron Astrophys 369:87–98. https://doi.org/10.1051/0004-6361:20010144. arXiv:astro-ph/0012457
Gratton RG, Lucatello S, Bragaglia A, Carretta E, Momany Y, Pancino E, Valenti E (2006) Na–O anticorrelation and HB. III. The abundances of NGC 6441 from FLAMES-UVES spectra. Astron Astrophys 455:271–281. https://doi.org/10.1051/0004-6361:20064957. arXiv:astro-ph/0603858
Gratton RG, Lucatello S, Bragaglia A, Carretta E, Cassisi S, Momany Y, Pancino E, Valenti E, Caloi V, Claudi R, D’Antona F, Desidera S, François P, James G, Moehler S, Ortolani S, Pasquini L, Piotto G, Recio-Blanco A (2007) Na–O anticorrelation and horizontal branches. V. The Na–O anticorrelation in NGC 6441 from Giraffe spectra. Astron Astrophys 464:953–965. https://doi.org/10.1051/0004-6361:20066061. arXiv:astro-ph/0701179
Gratton RG, Carretta E, Bragaglia A, Lucatello S, D’Orazi V (2010a) The second and third parameters of the horizontal branch in globular clusters. Astron Astrophys 517:A81. https://doi.org/10.1051/0004-6361/200912572. arXiv:1004.3862
Gratton RG, D’Orazi V, Bragaglia A, Carretta E, Lucatello S (2010b) The connection between missing AGB stars and extended horizontal branches. Astron Astrophys 522:A77. https://doi.org/10.1051/0004-6361/201015405. arXiv:1010.5913
Gratton RG, Johnson CI, Lucatello S, D’Orazi V, Pilachowski C (2011a) Multiple populations in \(\omega \) Centauri: a cluster analysis of spectroscopic data. Astron Astrophys 534:A72. https://doi.org/10.1051/0004-6361/201117093. arXiv:1105.5544
Gratton RG, Lucatello S, Carretta E, Bragaglia A, D’Orazi V, Momany YA (2011b) The Na–O anticorrelation in horizontal branch stars. I. NGC 2808. Astron Astrophys 534:A123. https://doi.org/10.1051/0004-6361/201117690. arXiv:1109.4013
Gratton RG, Carretta E, Bragaglia A (2012a) Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters. Astron Astrophys Rev 20:50. https://doi.org/10.1007/s00159-012-0050-3. arXiv:1201.6526
Gratton RG, Lucatello S, Carretta E, Bragaglia A, D’Orazi V, Al Momany Y, Sollima A, Salaris M, Cassisi S (2012b) The Na–O anticorrelation in horizontal branch stars. II. NGC 1851. Astron Astrophys 539:A19. https://doi.org/10.1051/0004-6361/201118491. arXiv:1201.1772
Gratton RG, Villanova S, Lucatello S, Sollima A, Geisler D, Carretta E, Cassisi S, Bragaglia A (2012c) Spectroscopic analysis of the two subgiant branches of the globular cluster NGC 1851. Astron Astrophys 544:A12. https://doi.org/10.1051/0004-6361/201219276. arXiv:1205.5719
Gratton RG, Lucatello S, Sollima A, Carretta E, Bragaglia A, Momany Y, D’Orazi V, Cassisi S, Pietrinferni A, Salaris M (2013) The Na–O anticorrelation in horizontal branch stars. III. 47 Tucanae and M 5. Astron Astrophys 549:A41. https://doi.org/10.1051/0004-6361/201219976. arXiv:1210.4069
Gratton RG, Lucatello S, Sollima A, Carretta E, Bragaglia A, Momany Y, D’Orazi V, Cassisi S, Salaris M (2014) The Na–O anticorrelation in horizontal branch stars. IV. M 22. Astron Astrophys 563:A13. https://doi.org/10.1051/0004-6361/201323101. arXiv:1401.7109
Gratton RG, Lucatello S, Sollima A, Carretta E, Bragaglia A, Momany Y, D’Orazi V, Salaris M, Cassisi S, Stetson PB (2015) The Na–O anticorrelation in horizontal branch stars. V. NGC 6723. Astron Astrophys 573:A92. https://doi.org/10.1051/0004-6361/201424393. arXiv:1410.8378
Grebel EK (2016) Globular Clusters in the Local Group. In: Meiron Y, Li S, Liu FK, Spurzem R (eds) Star clusters and black holes in galaxies across cosmic time, IAU Symposium, vol 312, pp 157–170. https://doi.org/10.1017/S1743921315008078
Greggio L, Renzini A (1990) Clues on the hot star content and the ultraviolet output of elliptical galaxies. Astrophys J 364:35–64. https://doi.org/10.1086/169384
Griffen BF, Drinkwater MJ, Thomas PA, Helly JC, Pimbblet KA (2010) Globular cluster formation within the Aquarius simulation. Mon Not R Astron Soc 405(1):375–386. https://doi.org/10.1111/j.1365-2966.2010.16458.x. arXiv:0910.0310
Grillmair CJ (2009) Four new stellar debris streams in the galactic halo. Astrophys J 693:1118–1127. https://doi.org/10.1088/0004-637X/693/2/1118. arXiv:0811.3965
Grillmair CJ, Dionatos O (2006) Detection of a 63\({^\circ }\) cold stellar stream in the Sloan Digital Sky Survey. Astrophys J Lett 643:L17–L20. https://doi.org/10.1086/505111. arXiv:astro-ph/0604332
Grundahl F, VandenBerg DA, Andersen MI (1998) Strömgren photometry of globular clusters: the distance and age of M13, evidence for two populations of horizontal-branch stars. Astrophys J Lett 500:L179–L182. https://doi.org/10.1086/311419. arXiv:astro-ph/9806081
Grundahl F, Catelan M, Landsman WB, Stetson PB, Andersen MI (1999) Hot horizontal-branch stars: the ubiquitous nature of the “Jump” in Strömgren u, low gravities, and the role of radiative levitation of metals. Astrophys J 524:242–261. https://doi.org/10.1086/307807. arXiv:astro-ph/9903120
Gruyters P, Nordlander T, Korn AJ (2014) Atomic diffusion and mixing in old stars. V. A deeper look into the globular cluster NGC 6752. Astron Astrophys 567:A72. https://doi.org/10.1051/0004-6361/201423590. arXiv:1405.6543
Gruyters P, Lind K, Richard O, Grundahl F, Asplund M, Casagrande L, Charbonnel C, Milone A, Primas F, Korn AJ (2016) Atomic diffusion and mixing in old stars. VI. The lithium content of M30. Astron Astrophys 589:A61. https://doi.org/10.1051/0004-6361/201527948. arXiv:1603.01565
Harbeck D, Smith GH, Grebel EK (2003) CN abundance variations on the main sequence of 47 Tucanae. Astron J 125:197–207. https://doi.org/10.1086/345570. arXiv:astro-ph/0210364
Harris WE (1996) A catalog of parameters for globular clusters in the Milky Way. Astron J 112:1487. https://doi.org/10.1086/118116
Hatzidimitriou D, Held EV, Tognelli E, Bragaglia A, Magrini L, Bravi L, Gazeas K, Dapergolas A, Drazdauskas A, Delgado-Mena E, Friel ED, Minkeviciute R, Sordo R, Tautvaisiene G, Gilmore G, Randich S, Feltzing S, Vallenari A, Alfaro EJ, Flaccomio E, Lanzafame AC, Pancino E, Smiljanic R, Bayo A, Bergemann M, Carraro G, Casey AR, Costado MT, Damiani F, Franciosini E, Gonneau A, Jofré P, Lewis J, Monaco L, Morbidelli L, Worley CC, Zaggia S (2019) The Gaia-ESO Survey: the inner disc, intermediate-age open cluster Pismis 18. Astron Astrophys 626:A90. https://doi.org/10.1051/0004-6361/201834636. arXiv:1906.09828
Haywood M, Di Matteo P, Lehnert MD, Snaith O, Khoperskov S, Gómez A (2018) In disguise or out of reach: first clues about in situ and accreted stars in the stellar halo of the Milky Way from Gaia DR2. Astrophys J 863:113. https://doi.org/10.3847/1538-4357/aad235. arXiv:1805.02617
Heggie D, Hut P (2003) The gravitational million-body problem: a multidisciplinary approach to star cluster dynamics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139164535
Heggie DC (1975) Binary evolution in stellar dynamics. Mon Not R Astron Soc 173:729–787. https://doi.org/10.1093/mnras/173.3.729
Helmi A, Babusiaux C, Koppelman HH, Massari D, Veljanoski J, Brown AGA (2018) The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. Nature 563:85–88. https://doi.org/10.1038/s41586-018-0625-x. arXiv:1806.06038
Hénault-Brunet V, Gieles M, Agertz O, Read JI (2015) Multiple populations in globular clusters: the distinct kinematic imprints of different formation scenarios. Mon Not R Astron Soc 450:1164–1198. https://doi.org/10.1093/mnras/stv675. arXiv:1503.07532
Hénon M (1970) Numerical exploration of the restricted problem. VI. Hill’s case: non-periodic orbits. Astron Astrophys 9:24–36
Hénon M (1971) The Monte Carlo Method. Astrophys Space Sci 14:151–167. https://doi.org/10.1007/BF00649201
Herschel W (1814) Astronomical observations relating to the sidereal part of the heavens, and its connection with the nebulous part; arranged for the purpose of a critical examination. Philos Trans R Soc Lond Ser I 104:248–284
Hollyhead K, Bastian N, Adamo A, Silva-Villa E, Dale J, Ryon JE, Gazak Z (2015) Studying the YMC population of M83: how long clusters remain embedded, their interaction with the ISM and implications for GC formation theories. Mon Not R Astron Soc 449:1106–1117. https://doi.org/10.1093/mnras/stv331. arXiv:1502.03823
Hollyhead K, Kacharov N, Lardo C, Bastian N, Hilker M, Rejkuba M, Koch A, Grebel EK, Georgiev I (2017) Evidence for multiple populations in the intermediate-age cluster Lindsay 1 in the SMC. Mon Not R Astron Soc 465:L39–L43. https://doi.org/10.1093/mnrasl/slw179. arXiv:1609.01302
Hollyhead K, Lardo C, Kacharov N, Bastian N, Hilker M, Rejkuba M, Koch A, Grebel EK, Georgiev I (2018) Kron 3: a fourth intermediate age cluster in the SMC with evidence of multiple populations. Mon Not R Astron Soc 476:114–121. https://doi.org/10.1093/mnras/sty230. arXiv:1801.09670
Hollyhead K, Martocchia S, Lardo C, Bastian N, Kacharov N, Niederhofer F, Cabrera-Ziri I, Dalessandro E, Mucciarelli A, Salaris M, Usher C (2019) Spectroscopic detection of multiple populations in the 2 Gyr old cluster Hodge 6 in the LMC, arXiv e-prints. arXiv:1902.02297
Hong J, Vesperini E, Sollima A, McMillan SLW, D’Antona F, D’Ercole A (2015) Evolution of binary stars in multiple-population globular clusters. Mon Not R Astron Soc 449:629–638. https://doi.org/10.1093/mnras/stv306. arXiv:1503.02087
Hong J, Vesperini E, Sollima A, McMillan SLW, D’Antona F, D’Ercole A (2016) Evolution of binary stars in multiple-population globular clusters—II. Compact binaries. Mon Not R Astron Soc 457:4507–4514. https://doi.org/10.1093/mnras/stw262. arXiv:1604.01045
Hong J, Patel S, Vesperini E, Webb JJ, Dalessandro E (2019) Spatial mixing of binary stars in multiple-population globular clusters. Mon Not R Astron Soc 483:2592–2599. https://doi.org/10.1093/mnras/sty3308. arXiv:1812.01229
Hosek MW Jr, Lu JR, Anderson J, Najarro F, Ghez AM, Morris MR, Clarkson WI, Albers SM (2019) The unusual initial mass function of the arches cluster. Astrophys J 870:44. https://doi.org/10.3847/1538-4357/aaef90. arXiv:1808.02577
Huang Y, Chen B-Q, Zhang H-W, Yuan H-B, Xiang M-S, Wang C, Tian Z-J, Liu X-W (2019) Member Stars of the GD-1 Tidal Stream from the SDSS, LAMOST, and Gaia Surveys. Astrophys J 877:13. https://doi.org/10.3847/1538-4357/ab158a
Hurley JR, Aarseth SJ, Shara MM (2007) The core binary fractions of star clusters from realistic simulations. Astrophys J 665:707–718. https://doi.org/10.1086/517879. arXiv:0704.0290
Hut P, Bahcall JN (1983) Binary-single star scattering. I. Numerical experiments for equal masses. Astrophys J 268:319–341. https://doi.org/10.1086/160956
Ibata R, Bellazzini M, Malhan K, Martin N, Bianchini P (2019) Identification of the long stellar stream of the prototypical massive globular cluster \(\omega \) Centauri. Nat Astron 3:667–672. https://doi.org/10.1038/s41550-019-0751-x
Ibata RA, Gilmore G, Irwin MJ (1994) A dwarf satellite galaxy in Sagittarius. Nature 370:194–196. https://doi.org/10.1038/370194a0
Iben I, Rood RT, Strom KM, Strom SE (1969) Ratio of horizontal branch stars to red giant stars in globular clusters. Nature 224(5223):1006–1008. https://doi.org/10.1038/2241006a0
Iben I Jr (1964) Evolution through alpha-burning (\(M=3 \rightarrow 15 M_{\odot }\)). Astron J 69:545. https://doi.org/10.1086/109317
Iorio G, Belokurov V (2019) The shape of the Galactic halo with Gaia DR2 RR Lyrae. Anatomy of an ancient major merger. Mon Not R Astron Soc 482:3868–3879. https://doi.org/10.1093/mnras/sty2806. arXiv:1808.04370
Ivanova N, Belczynski K, Fregeau JM, Rasio FA (2005) The evolution of binary fractions in globular clusters. Mon Not R Astron Soc 358:572–584. https://doi.org/10.1111/j.1365-2966.2005.08804.x. arXiv:astro-ph/0501131
Ivans II, Sneden C, Kraft RP, Suntzeff NB, Smith VV, Langer GE, Fulbright JP (1999) Star-to-star abundance variations among bright giants in the mildly metal-poor globular cluster M4. Astron J 118:1273–1300. https://doi.org/10.1086/301017. arXiv:astro-ph/9905370
James G, François P, Bonifacio P, Carretta E, Gratton RG, Spite F (2004) Heavy elements and chemical enrichment in globular clusters. Astron Astrophys 427:825–838. https://doi.org/10.1051/0004-6361:20041512. arXiv:astro-ph/0408330
Jang S, Lee YW, Joo SJ, Na C (2014) Multiple populations in globular clusters and the origin of the Oosterhoff period groups. Mon Not R Astron Soc 443:L15–L19. https://doi.org/10.1093/mnrasl/slu064. arXiv:1404.7508
Johnson CI, Pilachowski CA (2010) Chemical abundances for 855 giants in the globular cluster Omega Centauri (NGC 5139). Astrophys J 722:1373–1410. https://doi.org/10.1088/0004-637X/722/2/1373. arXiv:1008.2232
Johnson CI, Rich RM, Pilachowski CA, Caldwell N, Mateo M, Bailey JI III, Crane JD (2015) A spectroscopic analysis of the galactic globular cluster NGC 6273 (M19). Astron J 150:63. https://doi.org/10.1088/0004-6256/150/2/63. arXiv:1507.00756
Johnson CI, Caldwell N, Rich RM, Pilachowski CA, Hsyu T (2016) The chemical composition of red giant branch stars in the galactic globular clusters NGC 6342 and NGC 6366. Astron J 152:21. https://doi.org/10.3847/0004-6256/152/1/21. arXiv:1606.08491
Johnson CI, Caldwell N, Rich RM, Mateo M, Bailey JI III, Clarkson WI, Olszewski EW, Walker MG (2017a) A chemical composition survey of the iron-complex globular cluster NGC 6273 (M19). Astrophys J 836:168. https://doi.org/10.3847/1538-4357/836/2/168. arXiv:1611.05830
Johnson CI, Caldwell N, Rich RM, Mateo M, Bailey JI III, Olszewski EW, Walker MG (2017b) Chemical complexity in the Eu-enhanced monometallic globular NGC 5986. Astrophys J 842:24. https://doi.org/10.3847/1538-4357/aa7414. arXiv:1705.10840
Johnson CI, Rich RM, Caldwell N, Mateo M, Bailey JI III, Olszewski EW, Walker MG (2018) Exploring the chemical composition and double horizontal branch of the bulge globular cluster NGC 6569. Astron J 155:71. https://doi.org/10.3847/1538-3881/aaa294. arXiv:1801.10475
Johnson CI, Caldwell N, Rich RM, Mateo M, Bailey JI (2019) Light element discontinuities suggest an early termination of star formation in the globular cluster NGC 6402 (M14). Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stz587. arXiv:1903.01951
Johnson JA, Ivans II, Stetson PB (2006) Chemical compositions of red giant stars in old large magellanic cloud globular clusters. Astrophys J 640:801–822. https://doi.org/10.1086/498882. arXiv:astro-ph/0512132
Kacharov N, Koch A, McWilliam A (2013) A comprehensive chemical abundance study of the outer halo globular cluster M 75. Astron Astrophys 554:A81. https://doi.org/10.1051/0004-6361/201321392. arXiv:1304.4247
Käppeler F (1999) The origin of the heavy elements: the s process. Prog Part Nucl Phys 43:419–483. https://doi.org/10.1016/S0146-6410(99)00098-8
Karakas AI, Lattanzio JC (2003) Production of aluminium and the heavy magnesium isotopes in asymptotic giant branch stars. Publ Astron Soc Aust 20:279–293. https://doi.org/10.1071/AS03010
Karakas AI, Lattanzio JC (2014) The Dawes Review 2: nucleosynthesis and Stellar yields of low- and intermediate-mass single stars. Publ Astron Soc Aust 31:e030. https://doi.org/10.1017/pasa.2014.21. arXiv:1405.0062
Keenan DW, Innanen KA (1975) Numerical investigation of galactic tidal effects on spherical stellar systems. Astron J 80:290–302. https://doi.org/10.1086/111744
Kim HS, Cho J, Sharples RM, Vazdekis A, Beasley MA, Yoon SJ (2016) A new catalog of homogenized absorption line indices for Milky Way globular clusters from high-resolution integrated spectroscopy. Astrophys J Suppl 227:24. https://doi.org/10.3847/1538-4365/227/2/24. arXiv:1610.08061
King CR, Da Costa GS, Demarque P (1985) The luminosity function on the subgiant branch of 47 Tucanae A comparison of observation and theory. Astrophys J 299:674–682. https://doi.org/10.1086/163733
King IR (1966) The structure of star clusters. III. Some simple dynamical models. Astron J 71:64. https://doi.org/10.1086/109857
Koch A, McWilliam A (2014) The chemical composition of a regular halo globular cluster: NGC 5897. Astron Astrophys 565:A23. https://doi.org/10.1051/0004-6361/201323119. arXiv:1403.1262
Koch A, Grebel EK, Martell SL (2019) Purveyors of fine halos: re-assessing globular cluster contributions to the Milky Way halo buildup with SDSS-IV. Astron Astrophys 625:A75. https://doi.org/10.1051/0004-6361/201834825. arXiv:1904.02146
Koposov SE, Rix HW, Hogg DW (2010) Constraining the Milky Way potential with a six-dimensional phase-space map of the GD-1 stellar stream. Astrophys J 712:260–273. https://doi.org/10.1088/0004-637X/712/1/260. arXiv:0907.1085
Koposov SE, Belokurov V, Torrealba G (2017) Gaia 1 and 2. A pair of new Galactic star clusters. Mon Not R Astron Soc 470:2702–2709. https://doi.org/10.1093/mnras/stx1182. arXiv:1702.01122
Kraft RP (1979) On the nonhomogeneity of metal abundances in stars of globular clusters and satellite subsystems of the Galaxy. Annu Rev Astron Astrophys 17:309–343. https://doi.org/10.1146/annurev.aa.17.090179.001521
Kraft RP (1994) Abundance differences among globular-cluster giants: primordial versus evolutionary scenarios. Publ Astron Soc Pac 106:553–565. https://doi.org/10.1086/133416
Kraft RP, Sneden C, Langer GE, Prosser CF (1992) Oxygen abundances in halo giants. II. Giants in the globular clusters M13 and M3 and the intermediately metal-poor halo field. Astron J 104:645–668. https://doi.org/10.1086/116261
Kraft RP, Sneden C, Smith GH, Shetrone MD, Fulbright J (1998) Proton capture chains in globular cluster stars. III. Abundances of giants in the second-parameter globular cluster NGC 7006. Astron J 115:1500–1515. https://doi.org/10.1086/300279
Krause M, Charbonnel C, Decressin T, Meynet G, Prantzos N (2013) Superbubble dynamics in globular cluster infancy. II. Consequences for secondary star formation in the context of self-enrichment via fast-rotating massive stars. Astron Astrophys 552:A121. https://doi.org/10.1051/0004-6361/201220694. arXiv:1302.2494
Krause MGH, Charbonnel C, Bastian N, Diehl R (2016) Gas expulsion in massive star clusters? Constraints from observations of young and gas-free objects. Astron Astrophys 587:A53. https://doi.org/10.1051/0004-6361/201526685. arXiv:1512.04256
Kroupa P (2002) The initial mass function of stars: evidence for uniformity in variable systems. Science 295:82–91. https://doi.org/10.1126/science.1067524. arXiv:astro-ph/0201098
Kruijssen JMD (2014) Globular cluster formation in the context of galaxy formation and evolution. Class Quantum Gravity 31(24):244006. https://doi.org/10.1088/0264-9381/31/24/244006. arXiv:1407.2953
Kruijssen JMD (2015) Globular clusters as the relics of regular star formation in ‘normal’ high-redshift galaxies. Mon Not R Astron Soc 454:1658–1686. https://doi.org/10.1093/mnras/stv2026. arXiv:1509.02163
Kuzma PB, Da Costa GS, Mackey AD, Roderick TA (2016) The outer envelopes of globular clusters—I. NGC 7089 (M2). Mon Not R Astron Soc 461:3639–3652. https://doi.org/10.1093/mnras/stw1561. arXiv:1606.05949
Kuzma PB, Da Costa GS, Mackey AD (2018) The outer envelopes of globular clusters. II. NGC 1851, NGC 5824 and NGC 1261. Mon Not R Astron Soc 473:2881–2898. https://doi.org/10.1093/mnras/stx2353. arXiv:1709.02915
Lada CJ, Lada EA (2003) Annu Rev Astron Astrophys 41:57–115. https://doi.org/10.1146/annurev.astro.41.011802.094844. arXiv:astro-ph/0301540
Lagioia EP, Milone AP, Marino AF, Cassisi S, Aparicio AJ, Piotto G, Anderson J, Barbuy B, Bedin LR, Bellini A, Brown T, D’Antona F, Nardiello D, Ortolani S, Pietrinferni A, Renzini A, Salaris M, Sarajedini A, van der Marel R, Vesperini E (2018) The Hubble Space Telescope UV legacy survey of galactic globular clusters—XII. The RGB bumps of multiple stellar populations. Mon Not R Astron Soc 475:4088–4103. https://doi.org/10.1093/mnras/sty083. arXiv:1801.03395
Lamers HJGLM, Baumgardt H, Gieles M (2010) Mass-loss rates and the mass evolution of star clusters. Mon Not R Astron Soc 409:305–328. https://doi.org/10.1111/j.1365-2966.2010.17309.x. arXiv:1007.1078
Langer GE, Hoffman R, Sneden C (1993) Sodium–oxygen abundance anticorrelations and deep-mixing scenarios for globular-cluster giants. Publ Astron Soc Pac 105:301–307. https://doi.org/10.1086/133147
Lapenna E, Mucciarelli A, Ferraro FR, Origlia L, Lanzoni B, Massari D, Dalessandro E (2015) Chemical analysis of asymptotic giant branch stars in M62. Astrophys J 813:97. https://doi.org/10.1088/0004-637X/813/2/97. arXiv:1509.08917
Lapenna E, Lardo C, Mucciarelli A, Salaris M, Ferraro FR, Lanzoni B, Massari D, Stetson PB, Cassisi S, Savino A (2016) Lost and found: evidence of second-generation stars along the asymptotic giant branch of the globular cluster NGC 6752. Astrophys J Lett 826:L1. https://doi.org/10.3847/2041-8205/826/1/L1. arXiv:1606.09256
Lardo C, Bellazzini M, Pancino E, Carretta E, Bragaglia A, Dalessandro E (2011) Mining SDSS in search of multiple populations in globular clusters. Astron Astrophys 525:A114. https://doi.org/10.1051/0004-6361/201015662. arXiv:1010.4697
Lardo C, Milone AP, Marino AF, Mucciarelli A, Pancino E, Zoccali M, Rejkuba M, Carrera R, Gonzalez O (2012) C and N abundances of main sequence and subgiant branch stars in NGC 1851. Astron Astrophys 541:A141. https://doi.org/10.1051/0004-6361/201118763. arXiv:1202.6176
Lardo C, Davies B, Kudritzki RP, Gazak JZ, Evans CJ, Patrick LR, Bergemann M, Plez B (2015) Red supergiants as cosmic abundance probes: the first direct metallicity determination of NGC 4038 in the antennae. Astrophys J 812:160. https://doi.org/10.1088/0004-637X/812/2/160. arXiv:1509.04937
Lardo C, Mucciarelli A, Bastian N (2016) The iron dispersion of the globular cluster M2, revised. Mon Not R Astron Soc 457:51–63. https://doi.org/10.1093/mnras/stv2802. arXiv:1512.00691
Lardo C, Cabrera-Ziri I, Davies B, Bastian N (2017a) Searching for globular cluster-like abundance patterns in young massive clusters—II. Results from the Antennae galaxies. Mon Not R Astron Soc 468:2482–2488. https://doi.org/10.1093/mnras/stx628. arXiv:1703.04591
Lardo C, Salaris M, Savino A, Donati P, Stetson PB, Cassisi S (2017b) Multiple populations along the asymptotic giant branch of the globular cluster M4. Mon Not R Astron Soc 466:3507–3512. https://doi.org/10.1093/mnras/stw3374. arXiv:1612.08929
Larsen SS, Brodie JP, Grundahl F, Strader J (2014) Nitrogen abundances and multiple stellar populations in the globular clusters of the Fornax dSph. Astrophys J 797:15. https://doi.org/10.1088/0004-637X/797/1/15. arXiv:1409.0541
Larsen SS, Baumgardt H, Bastian N, Brodie JP, Grundahl F, Strader J (2015) Radial distributions of sub-populations in the globular cluster M15: a more centrally concentrated primordial population. Astrophys J 804:71. https://doi.org/10.1088/0004-637X/804/1/71. arXiv:1503.00726
Larsen SS, Baumgardt H, Bastian N, Hernandez S (2019) Brodie JP (2019) Hubble Space Telescope photometry of multiple stellar populations in the inner parts of NGC 2419. Astron Astrophys 624:A25. https://doi.org/10.1051/0004-6361/201834494. arXiv:1902.01416
Lattanzio J, Forestini M, Charbonnel C (2000) Nucleosynthesis in intermediate mass AGB stars. Mem Soc Astron Ital 71:737–744 arXiv:astro-ph/9912298
Lee JW (2015) Multiple stellar populations of globular clusters from homogeneous Ca by photometry. I. M22 (NGC 6656). Astrophys J Suppl 219:7. https://doi.org/10.1088/0067-0049/219/1/7. arXiv:1506.00116
Lee JW (2017) Multiple stellar populations of globular clusters from homogeneous Ca–CN photometry. II. M5 (NGC 5904) and a new filter system. Astrophys J 844:77. https://doi.org/10.3847/1538-4357/aa7b8c. arXiv:1706.07969
Lee JW (2018) Multiple stellar populations of globular clusters from homogeneous Ca–CN photometry. III. NGC 6752. Astrophys J Suppl 238:24. https://doi.org/10.3847/1538-4365/aadcad. arXiv:1901.10107
Lee JW (2019) Multiple stellar populations of globular clusters from homogeneous Ca–CN photometry. IV. Toward precision populational tagging, arXiv e-prints. arXiv:1901.09584
Lee JW, Kang YW, Lee J, Lee YW (2009a) Enrichment by supernovae in globular clusters with multiple populations. Nature 462:480–482. https://doi.org/10.1038/nature08565. arXiv:0911.4798
Lee JW, Lee J, Kang YW, Lee YW, Han SI, Joo SJ, Rey SC, Yong D (2009b) Chemical inhomogeneity in red giant branch stars and RR lyrae variables in NGC 1851: two subpopulations in red giant branch. Astrophys J Lett 695:L78–L82. https://doi.org/10.1088/0004-637X/695/1/L78
Leigh N, Giersz M, Webb JJ, Hypki A, De Marchi G, Kroupa P, Sills A (2013) The state of globular clusters at birth: emergence from the gas-embedded phase. Mon Not R Astron Soc 436:3399–3412. https://doi.org/10.1093/mnras/stt1825. arXiv:1309.7054
Letarte B, Hill V, Jablonka P, Tolstoy E, François P, Meylan G (2006) VLT/UVES spectroscopy of individual stars in three globular clusters in the Fornax dwarf spheroidal galaxy. Astron Astrophys 453:547–554. https://doi.org/10.1051/0004-6361:20054439. arXiv:astro-ph/0603315
Li H, Gnedin OY (2019) Star cluster formation in cosmological simulations—III. Dynamical and chemical evolution. Mon Not R Astron Soc 486(3):4030–4043. https://doi.org/10.1093/mnras/stz1114. arXiv:1810.11036
Libralato M, Bellini A, van der Marel RP, Anderson J, Watkins LL, Piotto G, Ferraro FR, Nardiello D, Vesperini E (2018) Hubble Space Telescope proper motion (HSTPROMO) catalogs of galactic globular cluster. VI. Improved data reduction and internal-kinematic analysis of NGC 362. Astrophys J 861:99. https://doi.org/10.3847/1538-4357/aac6c0. arXiv:1805.05332
Lim B, Rauw G, Nazé Y, Sung H, Hwang N, Park BG (2019) Extended main sequence turn-off originating from a broad range of stellar rotational velocities. Nat Astron 3:76–81. https://doi.org/10.1038/s41550-018-0619-5. arXiv:1811.01593
Lim D, Han SI, Lee YW, Roh DG, Sohn YJ, Chun SH, Lee JW, Johnson CI (2015) Low-resolution spectroscopy for the globular clusters with signs of supernova enrichment: M22, NGC 1851, and NGC 288. Astrophys J Suppl 216:19. https://doi.org/10.1088/0067-0049/216/1/19. arXiv:1412.1832
Lin DNC, Richer HB (1992) Young globular clusters in the Milky Way Galaxy. Astrophys J Lett 388:L57–L60. https://doi.org/10.1086/186329
Lind K, Primas F, Charbonnel C, Grundahl F, Asplund M (2009) Signatures of intrinsic Li depletion and Li–Na anti-correlation in the metal-poor globular cluster NGC 6397. Astron Astrophys 503:545–557. https://doi.org/10.1051/0004-6361/200912524. arXiv:0906.2876
Lind K, Koposov SE, Battistini C, Marino AF, Ruchti G, Serenelli A, Worley CC, Alves-Brito A, Asplund M, Barklem PS, Bensby T, Bergemann M, Blanco-Cuaresma S, Bragaglia A, Edvardsson B, Feltzing S, Gruyters P, Heiter U, Jofre P, Korn AJ, Nordlander T, Ryde N, Soubiran C, Gilmore G, Randich S, Ferguson AMN, Jeffries RD, Vallenari A, Allende Prieto C, Pancino E, Recio-Blanco A, Romano D, Smiljanic R, Bellazzini M, Damiani F, Hill V, de Laverny P, Jackson RJ, Lardo C, Zaggia S (2015) The Gaia-ESO Survey: a globular cluster escapee in the Galactic halo. Astron Astrophys 575:L12. https://doi.org/10.1051/0004-6361/201425554. arXiv:1502.03934
Lindblad B (1922) Spectrophotometric methods for determining stellar luminosity. Astrophys J 55. https://doi.org/10.1086/142660
Lombardi JC Jr, Rasio FA, Shapiro SL (1995) On blue straggler formation by direct collisions of main sequence stars. Astrophys J Lett 445:L117–L120. https://doi.org/10.1086/187903. arXiv:astro-ph/9502106
Longmore SN (2015) Heart of darkness: dust obscuration of the central stellar component in globular clusters younger than \(\sim \)100 Myr in multiple stellar population models. Mon Not R Astron Soc 448:L62–L66. https://doi.org/10.1093/mnrasl/slu203. arXiv:1501.01216
Lucatello S, Sollima A, Gratton R, Vesperini E, D’Orazi V, Carretta E, Bragaglia A (2015) The incidence of binaries in globular cluster stellar populations. Astron Astrophys 584:A52. https://doi.org/10.1051/0004-6361/201526957. arXiv:1509.05014
Luck RE, Bond HE (1991) Subgiant CH stars. II. Chemical compositions and the evolutionary connection with barium stars. Astrophys J Suppl 77:515–540. https://doi.org/10.1086/191615
Lynden-Bell D (1967) Statistical mechanics of violent relaxation in stellar systems. Mon Not R Astron Soc 136:101. https://doi.org/10.1093/mnras/136.1.101
Lynden-Bell D, Wood R (1968) The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Mon Not R Astron Soc 138:495. https://doi.org/10.1093/mnras/138.4.495
Mackereth JT, Schiavon RP, Pfeffer J, Hayes CR, Bovy J, Anguiano B, Allende Prieto C, Hasselquist S, Holtzman J, Johnson JA, Majewski SR, O’Connell R, Shetrone M, Tissera PB, Fernández-Trincado JG (2019) The origin of accreted stellar halo populations in the Milky Way using APOGEE, Gaia, and the EAGLE simulations. Mon Not R Astron Soc 482:3426–3442. https://doi.org/10.1093/mnras/sty2955. arXiv:1808.00968
Mackey AD, Gilmore GF (2003) Surface brightness profiles and structural parameters for 53 rich stellar clusters in the Large Magellanic Cloud. Mon Not R Astron Soc 338:85–119. https://doi.org/10.1046/j.1365-8711.2003.06021.x. arXiv:astro-ph/0209031
Mackey AD, Gilmore GF (2003) Surface brightness profiles and structural parameters for globular clusters in the Fornax and Sagittarius dwarf spheroidal galaxies. Mon Not R Astron Soc 340:175–190. https://doi.org/10.1046/j.1365-8711.2003.06275.x. arXiv:astro-ph/0211396
MacLean BT, De Silva GM, Lattanzio J (2015) O, Na, Ba and Eu abundance patterns in open clusters. Mon Not R Astron Soc 446:3556–3561. https://doi.org/10.1093/mnras/stu2348. arXiv:1411.1185
MacLean BT, Campbell SW, De Silva GM, Lattanzio J, D’Orazi V, Simpson JD, Momany Y (2016) An extreme paucity of second population AGB stars in the ‘normal’ globular cluster M4. Mon Not R Astron Soc 460(1):L69–L73. https://doi.org/10.1093/mnrasl/slw073. arXiv:1604.05040
MacLean BT, Campbell SW, Amarsi AM, Nordlander T, Cottrell PL, De Silva GM, Lattanzio J, Constantino T, D’Orazi V, Casagrande L (2018a) On the AGB stars of M 4: a robust disagreement between spectroscopic observations and theory. Mon Not R Astron Soc 481:373–395. https://doi.org/10.1093/mnras/sty2297. arXiv:1808.06735
MacLean BT, Campbell SW, De Silva GM, Lattanzio J, D’Orazi V, Cottrell PL, Momany Y, Casagrande L (2018b) AGB subpopulations in the nearby globular cluster NGC 6397. Mon Not R Astron Soc 475:257–265. https://doi.org/10.1093/mnras/stx3217. arXiv:1712.03340
Magrini L, Randich S, Donati P, Bragaglia A, Adibekyan V, Romano D, Smiljanic R, Blanco-Cuaresma S, Tautvaisiene G, Friel E, Overbeek J, Jacobson H, Cantat-Gaudin T, Vallenari A, Sordo R, Pancino E, Geisler D, San Roman I, Villanova S, Casey A, Hourihane A, Worley CC, Francois P, Gilmore G, Bensby T, Flaccomio E, Korn AJ, Recio-Blanco A, Carraro G, Costado MT, Franciosini E, Heiter U, Jofré P, Lardo C, de Laverny P, Monaco L, Morbidelli L, Sacco G, Sousa SG, Zaggia S (2015) The Gaia-ESO Survey: insights into the inner-disc evolution from open clusters. Astron Astrophys 580:A85. https://doi.org/10.1051/0004-6361/201526305. arXiv:1505.04039
Majewski SR, Schiavon RP, Frinchaboy PM, Allende Prieto C, Barkhouser R, Bizyaev D, Blank B, Brunner S, Burton A, Carrera R, Chojnowski SD, Cunha K, Epstein C, Fitzgerald G, García Pérez AE, Hearty FR, Henderson C, Holtzman JA, Johnson JA, Lam CR, Lawler JE, Maseman P, Mészáros S, Nelson M, Nguyen DC, Nidever DL, Pinsonneault M, Shetrone M, Smee S, Smith VV, Stolberg T, Skrutskie MF, Walker E, Wilson JC, Zasowski G, Anders F, Basu S, Beland S, Blanton MR, Bovy J, Brownstein JR, Carlberg J, Chaplin W, Chiappini C, Eisenstein DJ, Elsworth Y, Feuillet D, Fleming SW, Galbraith-Frew J, García RA, García-Hernández DA, Gillespie BA, Girardi L, Gunn JE, Hasselquist S, Hayden MR, Hekker S, Ivans I, Kinemuchi K, Klaene M, Mahadevan S, Mathur S, Mosser B, Muna D, Munn JA, Nichol RC, O’Connell RW, Parejko JK, Robin AC, Rocha-Pinto H, Schultheis M, Serenelli AM, Shane N, Silva Aguirre V, Sobeck JS, Thompson B, Troup NW, Weinberg DH, Zamora O (2017) The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron J 154:94. https://doi.org/10.3847/1538-3881/aa784d. arXiv:1509.05420
Mapelli M (2017) Rotation in young massive star clusters. Mon Not R Astron Soc 467:3255–3267. https://doi.org/10.1093/mnras/stx304. arXiv:1702.00415
Marín-Franch A, Aparicio A, Piotto G, Rosenberg A, Chaboyer B, Sarajedini A, Siegel M, Anderson J, Bedin LR, Dotter A, Hempel M, King I, Majewski S, Milone AP, Paust N, Reid IN (2009) The ACS survey of galactic globular clusters. VII. Relative ages. Astrophys J 694:1498–1516. https://doi.org/10.1088/0004-637X/694/2/1498. arXiv:0812.4541
Marino AF, Milone AP, Piotto G, Villanova S, Bedin LR, Bellini A, Renzini A (2009) A double stellar generation in the globular cluster NGC 6656 (M 22). Two stellar groups with different iron and s-process element abundances. Astron Astrophys 505:1099–1113. https://doi.org/10.1051/0004-6361/200911827. arXiv:0905.4058
Marino AF, Milone AP, Piotto G, Villanova S, Gratton R, D’Antona F, Anderson J, Bedin LR, Bellini A, Cassisi S, Geisler D, Renzini A, Zoccali M (2011a) Sodium–oxygen anticorrelation and neutron-capture elements in omega centauri stellar populations. Astrophys J 731:64. https://doi.org/10.1088/0004-637X/731/1/64. arXiv:1102.1653
Marino AF, Sneden C, Kraft RP, Wallerstein G, Norris JE, Da Costa G, Milone AP, Ivans II, Gonzalez G, Fulbright JP, Hilker M, Piotto G, Zoccali M, Stetson PB (2011b) The two metallicity groups of the globular cluster M 22: a chemical perspective. Astron Astrophys 532:A8. https://doi.org/10.1051/0004-6361/201116546. arXiv:1105.1523
Marino AF, Villanova S, Milone AP, Piotto G, Lind K, Geisler D, Stetson PB (2011c) Sodium–oxygen anticorrelation among horizontal branch stars in the globular cluster M4. Astrophys J Lett 730:L16. https://doi.org/10.1088/2041-8205/730/2/L16. arXiv:1012.4931
Marino AF, Milone AP, Sneden C, Bergemann M, Kraft RP, Wallerstein G, Cassisi S, Aparicio A, Asplund M, Bedin RL, Hilker M, Lind K, Momany Y, Piotto G, Roederer IU, Stetson PB, Zoccali M (2012) The double sub-giant branch of NGC 6656 (M 22): a chemical characterization. Astron Astrophys 541:A15. https://doi.org/10.1051/0004-6361/201118381. arXiv:1202.2825
Marino AF, Milone AP, Przybilla N, Bergemann M, Lind K, Asplund M, Cassisi S, Catelan M, Casagrande L, Valcarce AAR, Bedin LR, Cortés C, D’Antona F, Jerjen H, Piotto G, Schlesinger K, Zoccali M, Angeloni R (2014) Helium enhanced stars and multiple populations along the horizontal branch of NGC 2808: direct spectroscopic measurements. Mon Not R Astron Soc 437:1609–1627. https://doi.org/10.1093/mnras/stt1993. arXiv:1310.4527
Marino AF, Milone AP, Karakas AI, Casagrande L, Yong D, Shingles L, Da Costa G, Norris JE, Stetson PB, Lind K, Asplund M, Collet R, Jerjen H, Sbordone L, Aparicio A, Cassisi S (2015) Iron and s-elements abundance variations in NGC 5286: comparison with ‘anomalous’ globular clusters and Milky Way satellites. Mon Not R Astron Soc 450:815–845. https://doi.org/10.1093/mnras/stv420. arXiv:1502.07438
Marino AF, Milone AP, Yong D, Da Costa G, Asplund M, Bedin LR, Jerjen H, Nardiello D, Piotto G, Renzini A, Shetrone M (2017) Spectroscopy and Photometry of Multiple Populations along the Asymptotic Giant Branch of NGC 2808 and NGC 6121 (M4). Astrophys J 843:66. https://doi.org/10.3847/1538-4357/aa7852
Marino AF, Milone AP, Casagrande L, Przybilla N, Balaguer-Núñez L, Di Criscienzo M, Serenelli A, Vilardell F (2018a) Discovery of extended main sequence turnoffs in galactic open clusters. Astrophys J Lett 863:L33. https://doi.org/10.3847/2041-8213/aad868. arXiv:1807.05888
Marino AF, Yong D, Milone AP, Piotto G, Lundquist M, Bedin LR, Chené AN, Da Costa G, Asplund M, Jerjen H (2018b) Metallicity variations in the type II globular cluster NGC 6934. Astrophys J 859:81. https://doi.org/10.3847/1538-4357/aabdea. arXiv:1804.04158
Marino AF, Milone AP, Renzini A, D’Antona F, Anderson J, Bedin LR, Bellini A, Cordoni G, Lagioia EP, Piotto G, Tailo M (2019) The Hubble Space Telescope UV legacy survey of galactic globular clusters. XIX. A chemical tagging of the multiple stellar populations over the chromosome maps. Mon Not R Astron Soc 487:3815–3844. https://doi.org/10.1093/mnras/stz1415. arXiv:1904.05180
Martell SL, Grebel EK (2010) Light-element abundance variations in the Milky Way halo. Astron Astrophys 519:A14. https://doi.org/10.1051/0004-6361/201014135. arXiv:1005.4070
Martell SL, Smith GH, Briley MM (2008) Deep mixing and metallicity: carbon depletion in globular cluster giants. Astron J 136:2522–2532. https://doi.org/10.1088/0004-6256/136/6/2522. arXiv:0809.4470
Martell SL, Smolinski JP, Beers TC, Grebel EK (2011) Building the Galactic halo from globular clusters: evidence from chemically unusual red giants. Astron Astrophys 534:A136. https://doi.org/10.1051/0004-6361/201117644. arXiv:1109.3916
Martell SL, Shetrone MD, Lucatello S, Schiavon RP, Mészáros S, Allende Prieto C, García-Hernández DA, Beers TC, Nidever DL (2016) Chemical tagging in the SDSS-III/APOGEE survey: new identifications of halo stars with globular cluster origins. Astrophys J 825:146. https://doi.org/10.3847/0004-637X/825/2/146. arXiv:1605.05792
Martocchia S, Bastian N, Usher C, Kozhurina-Platais V, Niederhofer F, Cabrera-Ziri I, Dalessandro E, Hollyhead K, Kacharov N, Lardo C, Larsen S, Mucciarelli A, Platais I, Salaris M, Cordero M, Geisler D, Hilker M, Li C, Mackey D (2017) The search for multiple populations in Magellanic Cloud Clusters—III. No evidence for multiple populations in the SMC cluster NGC 419. Mon Not R Astron Soc 468:3150–3158. https://doi.org/10.1093/mnras/stx660. arXiv:1703.04631
Martocchia S, Cabrera-Ziri I, Lardo C, Dalessandro E, Bastian N, Kozhurina-Platais V, Usher C, Niederhofer F, Cordero M, Geisler D, Hollyhead K, Kacharov N, Larsen S, Li C, Mackey D, Hilker M, Mucciarelli A, Platais I, Salaris M (2018a) Age as a major factor in the onset of multiple populations in stellar clusters. Mon Not R Astron Soc 473:2688–2700. https://doi.org/10.1093/mnras/stx2556. arXiv:1710.00831
Martocchia S, Niederhofer F, Dalessandro E, Bastian N, Kacharov N, Usher C, Cabrera-Ziri I, Lardo C, Cassisi S, Geisler D, Hilker M, Hollyhead K, Kozhurina-Platais V, Larsen S, Mackey D, Mucciarelli A, Platais I, Salaris M (2018b) The search for multiple populations in magellanic cloud clusters—IV. Coeval multiple stellar populations in the young star cluster NGC 1978. Mon Not R Astron Soc 477:4696–4705. https://doi.org/10.1093/mnras/sty916. arXiv:1804.04141
Massari D, Mucciarelli A, Dalessandro E, Bellazzini M, Cassisi S, Fiorentino G, Ibata RA, Lardo C, Salaris M (2017) The chemical composition of the low-mass Galactic globular cluster NGC 6362. Mon Not R Astron Soc 468:1249–1258. https://doi.org/10.1093/mnras/stx549. arXiv:1703.00385
Masseron T, García-Hernández DA, Mészáros S, Zamora O, Dell’Agli F, Allende Prieto C, Edvardsson B, Shetrone M, Plez B, Fernández-Trincado JG, Cunha K, Jönsson H, Geisler D, Beers TC, Cohen RE (2019) Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code. I. The northern clusters. Astron Astrophys 622:A191. https://doi.org/10.1051/0004-6361/201834550. arXiv:1812.08817
Mastrobuono-Battisti A, Perets HB (2013) Evolution of second-generation stars in stellar disks of globular and nuclear clusters: \(\omega \) Centauri as a test case. Astrophys J 779:85. https://doi.org/10.1088/0004-637X/779/1/85. arXiv:1304.6086
Mateluna R, Geisler D, Villanova S, Carraro G, Grocholski A, Sarajedini A, Cole A, Smith V (2012) Chemical abundances in the old LMC globular cluster Hodge 11. Astron Astrophys 548:A82. https://doi.org/10.1051/0004-6361/201219750
McClure RD, Fletcher JM, Nemec JM (1980) The binary nature of the barium stars. Astrophys J Lett 238:L35–L38. https://doi.org/10.1086/183252
McConnachie AW (2012) The observed properties of dwarf galaxies in and around the local group. Astron J 144:4. https://doi.org/10.1088/0004-6256/144/1/4. arXiv:1204.1562
McCrea WH (1964) Extended main-sequence of some stellar clusters. Mon Not R Astron Soc 128:147. https://doi.org/10.1093/mnras/128.2.147
McLaughlin DE, Fall SM (2008) Shaping the globular cluster mass function by stellar-dynamical evaporation. Astrophys J 679:1272–1287. https://doi.org/10.1086/533485. arXiv:0704.0080
McLaughlin DE, van der Marel RP (2005) Resolved massive star clusters in the milky way and its satellites: brightness profiles and a catalog of fundamental parameters. Astrophys J Suppl 161:304–360. https://doi.org/10.1086/497429. arXiv:astro-ph/0605132
McMillan SLW, Vesperini E, Portegies Zwart SF (2007) A dynamical origin for early mass segregation in young star clusters. Astrophys J Lett 655:L45–L49. https://doi.org/10.1086/511763. arXiv:astro-ph/0609515
McSaveney JA, Wood PR, Scholz M, Lattanzio JC, Hinkle KH (2007) Abundances in intermediate-mass AGB stars undergoing third dredge-up and hot-bottom burning. Mon Not R Astron Soc 378:1089–1100. https://doi.org/10.1111/j.1365-2966.2007.11845.x. arXiv:0704.1907
Meléndez J, Asplund M, Gustafsson B, Yong D (2009) The peculiar solar composition and its possible relation to planet formation. Astrophys J Lett 704(1):L66–L70. https://doi.org/10.1088/0004-637X/704/1/L66. arXiv:0909.2299
Mészáros S, Martell SL, Shetrone M, Lucatello S, Troup NW, Bovy J, Cunha K, García-Hernández DA, Overbeek JC, Allende Prieto C, Beers TC, Frinchaboy PM, García Pérez AE, Hearty FR, Holtzman J, Majewski SR, Nidever DL, Schiavon RP, Schneider DP, Sobeck JS, Smith VV, Zamora O, Zasowski G (2015) Exploring anticorrelations and light element variations in northern globular clusters observed by the APOGEE survey. Astron J 149:153. https://doi.org/10.1088/0004-6256/149/5/153. arXiv:1501.05127
Mikolaitis Š, Tautvaisiene G, Gratton R, Bragaglia A, Carretta E (2010) Chemical composition of clump stars in the open cluster NGC 6134. Mon Not R Astron Soc 407:1866–1874. https://doi.org/10.1111/j.1365-2966.2010.17030.x. arXiv:1005.3944
Milone AP, Bedin LR, Piotto G, Anderson J (2009) Multiple stellar populations in Magellanic Cloud clusters. I. An ordinary feature for intermediate age globulars in the LMC? Astron Astrophys 497:755–771. https://doi.org/10.1051/0004-6361/200810870. arXiv:0810.2558
Milone AP, Marino AF, Cassisi S, Piotto G, Bedin LR, Anderson J, Allard F, Aparicio A, Bellini A, Buonanno R, Monelli M, Pietrinferni A (2012a) The infrared eye of the wide-field camera 3 on the Hubble Space Telescope reveals multiple main sequences of very low mass stars in NGC 2808. Astrophys J Lett 754:L34. https://doi.org/10.1088/2041-8205/754/2/L34. arXiv:1206.5529
Milone AP, Marino AF, Piotto G, Bedin LR, Anderson J, Aparicio A, Cassisi S, Rich RM (2012b) A double main sequence in the globular cluster NGC 6397. Astrophys J 745:27. https://doi.org/10.1088/0004-637X/745/1/27. arXiv:1110.1077
Milone AP, Piotto G, Bedin LR, Aparicio A, Anderson J, Sarajedini A, Marino AF, Moretti A, Davies MB, Chaboyer B, Dotter A, Hempel M, Marín-Franch A, Majewski S, Paust NEQ, Reid IN, Rosenberg A, Siegel M (2012c) The ACS survey of Galactic globular clusters. XII. Photometric binaries along the main sequence. Astron Astrophys 540:A16. https://doi.org/10.1051/0004-6361/201016384. arXiv:1111.0552
Milone AP, Piotto G, Bedin LR, Cassisi S, Anderson J, Marino AF, Pietrinferni A, Aparicio A (2012d) Luminosity and mass functions of the three main sequences of the globular cluster NGC 2808. Astron Astrophys 537:A77. https://doi.org/10.1051/0004-6361/201116539. arXiv:1108.2391
Milone AP, Piotto G, Bedin LR, King IR, Anderson J, Marino AF, Bellini A, Gratton R, Renzini A, Stetson PB, Cassisi S, Aparicio A, Bragaglia A, Carretta E, D’Antona F, Di Criscienzo M, Lucatello S, Monelli M, Pietrinferni A (2012e) Multiple stellar populations in 47 Tucanae. Astrophys J 744:58. https://doi.org/10.1088/0004-637X/744/1/58. arXiv:1109.0900
Milone AP, Marino AF, Piotto G, Bedin LR, Anderson J, Aparicio A, Bellini A, Cassisi S, D’Antona F, Grundahl F, Monelli M, Yong D (2013) A WFC3/HST view of the three stellar populations in the globular cluster NGC 6752. Astrophys J 767:120. https://doi.org/10.1088/0004-637X/767/2/120. arXiv:1301.7044
Milone AP, Marino AF, Bedin LR, Piotto G, Cassisi S, Dieball A, Anderson J, Jerjen H, Asplund M, Bellini A, Brogaard K, Dotter A, Giersz M, Heggie DC, Knigge C, Rich RM, van den Berg M, Buonanno R (2014a) The M 4 Core Project with HST—II. Multiple stellar populations at the bottom of the main sequence. Mon Not R Astron Soc 439:1588–1595. https://doi.org/10.1093/mnras/stu030. arXiv:1401.1091
Milone AP, Marino AF, Dotter A, Norris JE, Jerjen H, Piotto G, Cassisi S, Bedin LR, Recio Blanco A, Sarajedini A, Asplund M, Monelli M, Aparicio A (2014b) Global and nonglobal parameters of horizontal-branch morphology of globular clusters. Astrophys J 785:21. https://doi.org/10.1088/0004-637X/785/1/21. arXiv:1312.4169
Milone AP, Marino AF, Piotto G, Bedin LR, Anderson J, Renzini A, King IR, Bellini A, Brown TM, Cassisi S, D’Antona F, Jerjen H, Nardiello D, Salaris M, Marel RP, Vesperini E, Yong D, Aparicio A, Sarajedini A, Zoccali M (2015a) The Hubble Space Telescope UV legacy survey of galactic globular clusters—II. The seven stellar populations of NGC 7089 (M2). Mon Not R Astron Soc 447:927–938. https://doi.org/10.1093/mnras/stu2446. arXiv:1411.5043
Milone AP, Marino AF, Piotto G, Renzini A, Bedin LR, Anderson J, Cassisi S, D’Antona F, Bellini A, Jerjen H, Pietrinferni A, Ventura P (2015b) The Hubble Space Telescope UV legacy survey of galactic globular clusters. III. A quintuple stellar population in NGC 2808. Astrophys J 808:51. https://doi.org/10.1088/0004-637X/808/1/51. arXiv:1505.05934
Milone AP, Marino AF, Bedin LR, Dotter A, Jerjen H, Kim D, Nardiello D, Piotto G, Cong J (2016) The binary populations of eight globular clusters in the outer halo of the Milky Way. Mon Not R Astron Soc 455:3009–3019. https://doi.org/10.1093/mnras/stv2415. arXiv:1510.05086
Milone AP, Marino AF, Bedin LR, Anderson J, Apai D, Bellini A, Bergeron P, Burgasser AJ, Dotter A, Rees JM (2017) The HST large programme on \(\omega \) Centauri–I. Multiple stellar populations at the bottom of the main sequence probed in NIR-Optical. Mon Not R Astron Soc 469:800–812. https://doi.org/10.1093/mnras/stx836. arXiv:1704.00418
Milone AP, Marino AF, Di Criscienzo M, D’Antona F, Bedin LR, Da Costa G, Piotto G, Tailo M, Dotter A, Angeloni R, Anderson J, Jerjen H, Li C, Dupree A, Granata V, Lagioia EP, Mackey AD, Nardiello D, Vesperini E (2018a) Multiple stellar populations in Magellanic Cloud clusters—VI. A survey of multiple sequences and Be stars in young clusters. Mon Not R Astron Soc 477:2640–2663. https://doi.org/10.1093/mnras/sty661. arXiv:1802.10538
Milone AP, Marino AF, Mastrobuono-Battisti A, Lagioia EP (2018b) Gaia unveils the kinematics of multiple stellar populations in 47 Tucanae. Mon Not R Astron Soc 479:5005–5011. https://doi.org/10.1093/mnras/sty1873. arXiv:1807.03511
Milone AP, Marino AF, Renzini A, D’Antona F, Anderson J, Barbuy B, Bedin LR, Bellini A, Brown TM, Cassisi S, Cordoni G, Lagioia EP, Nardiello D, Ortolani S, Piotto G, Sarajedini A, Tailo M, van der Marel RP, Vesperini E (2018c) The Hubble Space Telescope UV legacy survey of galactic globular clusters—XVI. The helium abundance of multiple populations. Mon Not R Astron Soc 481:5098–5122. https://doi.org/10.1093/mnras/sty2573. arXiv:1809.05006
Milone AP, Marino AF, Bedin LR, Anderson J, Apai D, Bellini A, Dieball A, Salaris M, Libralato M, Nardiello D, Bergeron P, Burgasser AJ, Rees JM, Rich RM, Richer HB (2019a) The HST Large Programme on NGC 6752—II. Multiple populations at the bottom of the main sequence probed in NIR. Mon Not R Astron Soc 484(3):4046–4053. https://doi.org/10.1093/mnras/stz277. arXiv:1901.07230
Milone AP, Marino AF, Bedin LR, Anderson J, Apai D, Bellini A, Dieball A, Salaris M, Libralato M, Nardiello D, Bergeron P, Burgasser AJ, Rees JM, Rich RM, Richer HB (2019b) The HST Large Programme on NGC 6752. II. Multiple populations at the bottom of the main sequence probed in NIR. Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stz277. arXiv:1901.07230
Moe M, Di Stefano R (2017) Mind your Ps and Qs: the interrelation between period (P) and mass-ratio (Q) distributions of binary stars. Astrophys J Suppl 230:15. https://doi.org/10.3847/1538-4365/aa6fb6. arXiv:1606.05347
Moe M, Kratter KM, Badenes C (2019) The close binary fraction of solar-type stars is strongly anti-correlated with metallicity. Astrophys J 875:61. https://doi.org/10.3847/1538-4357/ab0d88. arXiv:1808.02116
Moehler S, Sweigart AV, Landsman WB, Hammer NJ, Dreizler S (2004) Spectroscopic analyses of the blue hook stars in NGC 2808: a more stringent test of the late hot flasher scenario. Astron Astrophys 415:313–323. https://doi.org/10.1051/0004-6361:20034505. arXiv:astro-ph/0311215
Monaco L, Bonifacio P, Sbordone L, Villanova S, Pancino E (2010) The lithium content of \(\omega \). Centauri New clues to the cosmological Li problem from old stars in external galaxies. Astron Astrophys 519:L3. https://doi.org/10.1051/0004-6361/201015162. arXiv:1008.1817
Monaco L, Villanova S, Bonifacio P, Caffau E, Geisler D, Marconi G, Momany Y, Ludwig HG (2012) Lithium and sodium in the globular cluster. Detection of a Li-rich dwarf star: preservation or pollution? Astron Astrophys 539:A157. https://doi.org/10.1051/0004-6361/201117709. arXiv:1108.0138
Monelli M, Milone AP, Stetson PB, Marino AF, Cassisi S, del Pino MA, Salaris M, Aparicio A, Asplund M, Grundahl F, Piotto G, Weiss A, Carrera R, Cebrián M, Murabito S, Pietrinferni A, Sbordone L (2013) The SUMO project I. A survey of multiple populations in globular clusters. Mon Not R Astron Soc 431:2126–2149. https://doi.org/10.1093/mnras/stt273. arXiv:1303.5187
Moody K, Sigurdsson S (2009) Modeling the retention probability of black holes in globular clusters: kicks and rates. Astrophys J 690:1370–1377. https://doi.org/10.1088/0004-637X/690/2/1370. arXiv:0809.1617
Moretti A, de Angeli F, Piotto G (2008) Environmental effects on the globular cluster blue straggler population: a statistical approach. Astron Astrophys 483:183–197. https://doi.org/10.1051/0004-6361:20078416
Muñoz C, Villanova S, Geisler D, Saviane I, Dias B, Cohen RE, Mauro F (2017) The peculiar Na–O anticorrelation of the bulge globular cluster NGC 6440. Astron Astrophys 605:A12. https://doi.org/10.1051/0004-6361/201730468. arXiv:1705.02684
Muñoz C, Geisler D, Villanova S, Saviane I, Cortés CC, Dias B, Cohen RE, Mauro F, Moni Bidin C (2018) Chemical analysis of NGC 6528: one of the most metal-rich bulge globular clusters. Astron Astrophys 620:A96. https://doi.org/10.1051/0004-6361/201833373. arXiv:1809.04164
Mucciarelli A, Origlia L, Ferraro FR, Pancino E (2009) Looking outside the galaxy: the discovery of chemical anomalies in three old large magellanic cloud clusters. Astrophys J Lett 695:L134–L139. https://doi.org/10.1088/0004-637X/695/2/L134. arXiv:0902.4778
Mucciarelli A, Salaris M, Lovisi L, Ferraro FR, Lanzoni B, Lucatello S, Gratton RG (2011) Lithium abundance in the globular cluster M4: from the turn-off to the red giant branch bump. Mon Not R Astron Soc 412:81–94. https://doi.org/10.1111/j.1365-2966.2010.17884.x. arXiv:1010.3879
Mucciarelli A, Bellazzini M, Ibata R, Merle T, Chapman SC, Dalessandro E, Sollima A (2012) News from the Galactic suburbia: the chemical composition of the remote globular cluster NGC 2419. Mon Not R Astron Soc 426:2889–2900. https://doi.org/10.1111/j.1365-2966.2012.21847.x. arXiv:1208.0195
Mucciarelli A, Salaris M, Bonifacio P (2012b) Giants reveal what dwarfs conceal: Li abundance in lower red giant branch stars as diagnostic of the primordial Li. Mon Not R Astron Soc 419:2195–2205. https://doi.org/10.1111/j.1365-2966.2011.19870.x. arXiv:1109.4589
Mucciarelli A, Bellazzini M, Catelan M, Dalessandro E, Amigo P, Correnti M, Cortés C, D’Orazi V (2013) NGC 5694: another foster son of the Galactic halo. Mon Not R Astron Soc 435:3667–3680. https://doi.org/10.1093/mnras/stt1558. arXiv:1308.6653
Mucciarelli A, Dalessandro E, Ferraro FR, Origlia L, Lanzoni B (2014a) No evidence of chemical anomalies in the bimodal turnoff cluster NGC 1806 in the Large Magellanic Cloud. Astrophys J Lett 793:L6. https://doi.org/10.1088/2041-8205/793/1/L6. arXiv:1409.0259
Mucciarelli A, Salaris M, Bonifacio P, Monaco L, Villanova S (2014b) The cosmological lithium problem outside the Galaxy: the Sagittarius globular cluster M54. Mon Not R Astron Soc 444:1812–1820. https://doi.org/10.1093/mnras/stu1522. arXiv:1407.7596
Mucciarelli A, Bellazzini M, Merle T, Plez B, Dalessandro E, Ibata R (2015a) Potassium: a new actor on the globular cluster chemical evolution stage. The case of NGC 2808. Astrophys J 801:68. https://doi.org/10.1088/0004-637X/801/1/68. arXiv:1501.03161
Mucciarelli A, Lapenna E, Massari D, Pancino E, Stetson PB, Ferraro FR, Lanzoni B, Lardo C (2015b) A chemical Trompe-L’oeil: no iron spread in the globular cluster M22. Astrophys J 809:128. https://doi.org/10.1088/0004-637X/809/2/128. arXiv:1507.01596
Mucciarelli A, Dalessandro E, Massari D, Bellazzini M, Ferraro FR, Lanzoni B, Lardo C, Salaris M, Cassisi S (2016) NGC 6362: the least massive globular cluster with chemically distinct multiple populations. Astrophys J 824:73. https://doi.org/10.3847/0004-637X/824/2/73. arXiv:1604.04151
Mucciarelli A, Lapenna E, Ferraro FR, Lanzoni B (2018) The chemical composition of NGC 5824, a globular cluster without iron spread but with an extreme Mg–Al anticorrelation. Astrophys J 859:75. https://doi.org/10.3847/1538-4357/aaba80. arXiv:1803.09759
Mucciarelli A, Lapenna E, Lardo C, Bonifacio P, Ferraro FR, Lanzoni B (2019) Confirming the presence of second-population stars and the iron discrepancy along the AGB of the globular cluster NGC 6752. Astrophys J 870:124. https://doi.org/10.3847/1538-4357/aaf3a4. arXiv:1811.10626
Myeong GC, Evans NW, Belokurov V, Sanders JL, Koposov SE (2018a) Discovery of new retrograde substructures: the shards of \(\omega \) Centauri? Mon Not R Astron Soc 478:5449–5459. https://doi.org/10.1093/mnras/sty1403
Myeong GC, Evans NW, Belokurov V, Sanders JL, Koposov SE (2018b) The Milky Way Halo in action space. Astrophys J Lett 856:L26. https://doi.org/10.3847/2041-8213/aab613. arXiv:1802.03351
Myeong GC, Evans NW, Belokurov V, Sanders JL, Koposov SE (2018c) The sausage globular clusters. Astrophys J Lett 863:L28. https://doi.org/10.3847/2041-8213/aad7f7. arXiv:1805.00453
Nardiello D, Piotto G, Milone AP, Marino AF, Bedin LR, Anderson J, Aparicio A, Bellini A, Cassisi S, D’Antona F, Hidalgo S, Ortolani S, Pietrinferni A, Renzini A, Salaris M, Marel RP, Vesperini E (2015) The Hubble Space Telescope UV legacy survey of galactic globular clusters—IV. Helium content and relative age of multiple stellar populations within NGC 6352. Mon Not R Astron Soc 451:312–322. https://doi.org/10.1093/mnras/stv971. arXiv:1504.07876
Nardiello D, Libralato M, Piotto G, Anderson J, Bellini A, Aparicio A, Bedin LR, Cassisi S, Granata V, King IR, Lucertini F, Marino AF, Milone AP, Ortolani S, Platais I, van der Marel RP (2018a) The Hubble Space Telescope UV legacy survey of galactic globular clusters—XVII. Public catalogue release. Mon Not R Astron Soc 481:3382–3393. https://doi.org/10.1093/mnras/sty2515. arXiv:1809.04300
Nardiello D, Milone AP, Piotto G, Anderson J, Bedin LR, Bellini A, Cassisi S, Libralato M, Marino AF (2018b) The Hubble Space Telescope UV legacy survey of galactic globular clusters—XIV. Multiple stellar populations within M 15 and their radial distribution. Mon Not R Astron Soc 477:2004–2019. https://doi.org/10.1093/mnras/sty719. arXiv:1803.05979
Nataf DM, Gould A, Pinsonneault MH, Stetson PB (2011) The gradients in the 47 tuc red giant branch bump and horizontal branch are consistent with a centrally concentrated, helium-enriched second stellar generation. Astrophys J 736:94. https://doi.org/10.1088/0004-637X/736/2/94. arXiv:1102.3916
Nataf DM, Wyse R, Schiavon RP, Ting YS, Minniti D, Cohen RE, Fernández-Trincado JG, Geisler D, Nitschelm C, Frinchaboy PM (2019) The relationship between globular cluster mass, metallicity, and light element abundance variations. Astron J 158:14. https://doi.org/10.3847/1538-3881/ab1a27. arXiv:1904.07884
Navarrete C, Chanamé J, Ramírez I, Meza A, Anglada-Escudé G, Shkolnik E (2015) The Kapteyn moving group is not tidal debris from \(\omega \) Centauri. Astrophys J 808:103. https://doi.org/10.1088/0004-637X/808/1/103. arXiv:1506.02041
Niederhofer F, Bastian N, Kozhurina-Platais V, Hilker M, de Mink SE, Cabrera-Ziri I, Li C, Ercolano B (2016) Controversial age spreads from the main sequence turn-off and red clump in intermediate-age clusters in the LMC. Astron Astrophys 586:A148. https://doi.org/10.1051/0004-6361/201526484. arXiv:1510.08476
Niederhofer F, Bastian N, Kozhurina-Platais V, Larsen S, Hollyhead K, Lardo C, Cabrera-Ziri I, Kacharov N, Platais I, Salaris M, Cordero M, Dalessandro E, Geisler D, Hilker M, Li C, Mackey D, Mucciarelli A (2017a) The search for multiple populations in Magellanic Cloud clusters—II. The detection of multiple populations in three intermediate-age SMC clusters. Mon Not R Astron Soc 465:4159–4165. https://doi.org/10.1093/mnras/stw3084. arXiv:1612.00400
Niederhofer F, Bastian N, Kozhurina-Platais V, Larsen S, Salaris M, Dalessandro E, Mucciarelli A, Cabrera-Ziri I, Cordero M, Geisler D, Hilker M, Hollyhead K, Kacharov N, Lardo C, Li C, Mackey D, Platais I (2017b) The search for multiple populations in Magellanic Cloud clusters—I. Two stellar populations in the Small Magellanic Cloud globular cluster NGC 121. Mon Not R Astron Soc 464:94–103. https://doi.org/10.1093/mnras/stw2269. arXiv:1609.01595
Nissen PE, Schuster WJ (2010) Two distinct halo populations in the solar neighborhood. Evidence from stellar abundance ratios and kinematics. Astron Astrophys 511:L10. https://doi.org/10.1051/0004-6361/200913877. arXiv:1002.4514
Norris J, Smith GH (1983) The cyanogen distribution of the giants in NGC 2808. Astrophys J 275:120–124. https://doi.org/10.1086/161517
Norris J, Cottrell PL, Freeman KC, Da Costa GS (1981) The abundance spread in the giants of NGC 6752. Astrophys J 244:205–220. https://doi.org/10.1086/158698
Norris JE (2004) The helium abundances of \(\omega \) Centauri. Astrophys J Lett 612:L25–L28. https://doi.org/10.1086/423986
Norris JE, Da Costa GS (1995) The giant branch of \(\omega \) Centauri. IV. Abundance patterns based on Echelle spectra of 40 red giants. Astrophys J 447:680. https://doi.org/10.1086/175909
Odenkirchen M, Grebel EK, Rockosi CM, Dehnen W, Ibata R, Rix HW, Stolte A, Wolf C, Anderson JE Jr, Bahcall NA, Brinkmann J, Csabai I, Hennessy G, Hindsley RB, Ivezić Ž, Lupton RH, Munn JA, Pier JR, Stoughton C, York DG (2001) Detection of massive tidal tails around the globular Cluster Palomar 5 with Sloan Digital Sky Survey commissioning data. Astrophys J Lett 548:L165–L169. https://doi.org/10.1086/319095. arXiv:astro-ph/0012311
Odenkirchen M, Grebel EK, Dehnen W, Rix HW, Yanny B, Newberg HJ, Rockosi CM, Martínez-Delgado D, Brinkmann J, Pier JR (2003) The extended tails of Palomar 5: A 10 deg arc of globular cluster tidal debris. Astron J 126:2385–2407. https://doi.org/10.1086/378601. arXiv:astro-ph/0307446
Oh KS, Lin DNC (1992) Tidal evolution of globular clusters. II. The effects of Galactic tidal field and diffusion. Astrophys J 386:519–538. https://doi.org/10.1086/171037
Olszewski EW, Schommer RA, Suntzeff NB, Harris HC (1991) Spectroscopy of giants in LMC clusters. I. Velocities, abundances, and the age-metallicity relation. Astron J 101:515–537. https://doi.org/10.1086/115701
Olszewski EW, Saha A, Knezek P, Subramaniam A, de Boer T, Seitzer P (2009) A 500 Parsec halo surrounding the galactic globular NGC 1851. Astron J 138:1570–1576. https://doi.org/10.1088/0004-6256/138/6/1570. arXiv:0909.1755
O’Malley EM, Knaizev A, McWilliam A, Chaboyer B (2017) High-resolution spectroscopic abundances of red giant branch stars in NGC 6681. Astrophys J 846:23. https://doi.org/10.3847/1538-4357/aa7b72. arXiv:1706.06962
Ostriker JP, Spitzer L Jr, Chevalier RA (1972) On the evolution of globular clusters. Astrophys J Lett 176:L51. https://doi.org/10.1086/181018
Otsuki K, Honda S, Aoki W, Kajino T, Mathews GJ (2006) Neutron-capture elements in the metal-poor globular cluster M15. Astrophys J Lett 641:L117–L120. https://doi.org/10.1086/504106. arXiv:astro-ph/0603328
Overbeek JC, Friel ED, Donati P, Smiljanic R, Jacobson HR, Hatzidimitriou D, Held EV, Magrini L, Bragaglia A, Randich S, Vallenari A, Cantat-Gaudin T, Tautvaisiene G, Jiménez-Esteban F, Frasca A, Geisler D, Villanova S, Tang B, Muñoz C, Marconi G, Carraro G, San Roman I, Drazdauskas A, Ženoviene R, Gilmore G, Jeffries RD, Flaccomio E, Pancino E, Bayo A, Costado MT, Damiani F, Jofré P, Monaco L, Prisinzano L, Sousa SG, Zaggia S (2017) The Gaia-ESO Survey: the inner disk, intermediate-age open cluster Trumpler 23. Astron Astrophys 598:A68. https://doi.org/10.1051/0004-6361/201629345. arXiv:1611.00859
Pace G, Recio-Blanco A, Piotto G, Momany Y (2006) Abundance anomalies in hot horizontal branch stars of the Galactic globular cluster NGC 2808. Astron Astrophys 452:493–501. https://doi.org/10.1051/0004-6361:20054593
Pace G, Castro M, Meléndez J, Théado S, do Nascimento JD Jr, (2012) Lithium in M 67: from the main sequence to the red giant branch. Astron Astrophys 541:A150. https://doi.org/10.1051/0004-6361/201117704. arXiv:1203.4440
Pancino E (2018) Globular cluster chemistry in fast-rotating dwarf stars belonging to intermediate-age open clusters. Astron Astrophys 614:A80. https://doi.org/10.1051/0004-6361/201732351. arXiv:1802.06654
Pancino E, Galfo A, Ferraro FR, Bellazzini M (2007) The rotation of subpopulations in \(\omega \) Centauri. Astrophys J Lett 661:L155–L158. https://doi.org/10.1086/518959. arXiv:0704.2962
Pancino E, Rejkuba M, Zoccali M, Carrera R (2010) Low-resolution spectroscopy of main sequence stars belonging to 12 Galactic globular clusters. I. CH and CN band strength variations. Astron Astrophys 524:A44. https://doi.org/10.1051/0004-6361/201014383. arXiv:1009.1589
Pancino E, Romano D, Tang B, Tautvaisiene G, Casey AR, Gruyters P, Geisler D, San Roman I, Randich S, Alfaro EJ, Bragaglia A, Flaccomio E, Korn AJ, Recio-Blanco A, Smiljanic R, Carraro G, Bayo A, Costado MT, Damiani F, Jofré P, Lardo C, de Laverny P, Monaco L, Morbidelli L, Sbordone L, Sousa SG, Villanova S (2017) The Gaia-ESO Survey. Mg–Al anti-correlation in iDR4 globular clusters. Astron Astrophys 601:A112. https://doi.org/10.1051/0004-6361/201730474. arXiv:1702.06083
Pasquini L, Bonifacio P, Molaro P, Francois P, Spite F, Gratton RG, Carretta E, Wolff B (2005) Li in NGC 6752 and the formation of globular clusters. Astron Astrophys 441:549–553. https://doi.org/10.1051/0004-6361:20053607. arXiv:astro-ph/0506651
Pasquini L, Mauas P, Käufl HU, Cacciari C (2011) Measuring helium abundance difference in giants of NGC 2808. Astron Astrophys 531:A35. https://doi.org/10.1051/0004-6361/201116592. arXiv:1105.0346
Pastorelli G, Marigo P, Girardi L, Chen Y, Rubele S, Trabucchi M, Aringer B, Bladh S, Bressan A, Montalbán J, Boyer ML, Dalcanton JJ, Eriksson K, Groenewegen MAT, Höfner S, Lebzelter T, Nanni A, Rosenfield P, Wood PR, Cioni MRL (2019) Constraining the thermally-pulsing asymptotic giant branch phase with resolved stellar populations in the Small Magellanic Cloud, arXiv e-prints. arXiv:1903.04499
Peña Suárez VJ, Sales Silva JV, Katime Santrich OJ, Drake NA, Pereira CB (2018) High-resolution spectroscopic observations of single red giants in three open clusters: NGC 2360, NGC 3680, and NGC 5822. Astrophys J 854:184. https://doi.org/10.3847/1538-4357/aaa017
Piatti AE, Carballo-Bello JA (2019) Extra-tidal structures around the Gaia Sausage candidate globular cluster NGC 6779 (M56). Mon Not R Astron Soc 485:1029–1035. https://doi.org/10.1093/mnras/stz500. arXiv:1902.05824
Piatti AE, Mackey AD (2018) Evidence of differential tidal effects in the old globular cluster population of the Large Magellanic Cloud. Mon Not R Astron Soc 478:2164–2176. https://doi.org/10.1093/mnras/sty1048. arXiv:1804.09549
Pietrinferni A, Cassisi S, Salaris M, Castelli F (2004) A large stellar evolution database for population synthesis studies. I. Scaled solar models and isochrones. Astrophys J 612(1):168–190. https://doi.org/10.1086/422498. arXiv:astro-ph/0405193
Pietrinferni A, Cassisi S, Salaris M, Castelli F (2006) A large stellar evolution database for population synthesis studies. II. Stellar models and isochrones for an \(\alpha \)-enhanced metal distribution. Astrophys J 642(2):797–812. https://doi.org/10.1086/501344. arXiv:astro-ph/0603721
Pignatari M, Gallino R, Heil M, Wiescher M, Käppeler F, Herwig F, Bisterzo S (2010) The weak s-process in massive stars and its dependence on the neutron capture cross sections. Astrophys J 710:1557–1577. https://doi.org/10.1088/0004-637X/710/2/1557
Piotto G (2010) Observational evidence of multiple stellar populations in star clusters. Publ Korean Astron Soc 25:91–99. https://doi.org/10.5303/PKAS.2010.25.3.091. arXiv:0902.1422
Piotto G, De Angeli F, King IR, Djorgovski SG, Bono G, Cassisi S, Meylan G, Recio-Blanco A, Rich RM, Davies MB (2004) Relative frequencies of blue stragglers in galactic globular clusters: constraints for the formation mechanisms. Astrophys J Lett 604:L109–L112. https://doi.org/10.1086/383617. arXiv:astro-ph/0402592
Piotto G, Villanova S, Bedin LR, Gratton R, Cassisi S, Momany Y, Recio-Blanco A, Lucatello S, Anderson J, King IR, Pietrinferni A, Carraro G (2005) Metallicities on the double main sequence of \(\omega \) Centauri imply large helium enhancement. Astrophys J 621:777–784. https://doi.org/10.1086/427796. arXiv:astro-ph/0412016
Piotto G, Bedin LR, Anderson J, King IR, Cassisi S, Milone AP, Villanova S, Pietrinferni A, Renzini A (2007) A triple main sequence in the globular cluster NGC 2808. Astrophys J Lett 661:L53–L56. https://doi.org/10.1086/518503. arXiv:astro-ph/0703767
Piotto G, Milone AP, Bedin LR, Anderson J, King IR, Marino AF, Nardiello D, Aparicio A, Barbuy B, Bellini A, Brown TM, Cassisi S, Cool AM, Cunial A, Dalessandro E, D’Antona F, Ferraro FR, Hidalgo S, Lanzoni B, Monelli M, Ortolani S, Renzini A, Salaris M, Sarajedini A, van der Marel RP, Vesperini E, Zoccali M (2015) The Hubble Space Telescope UV legacy survey of galactic globular clusters. I. Overview of the project and detection of multiple stellar populations. Astron J 149:91. https://doi.org/10.1088/0004-6256/149/3/91. arXiv:1410.4564
Piskunov AE, Schilbach E, Kharchenko NV, Röser S, Scholz RD (2008) Tidal radii and masses of open clusters. Astron Astrophys 477:165–172. https://doi.org/10.1051/0004-6361:20078525
Platais I, Cudworth KM, Kozhurina-Platais V, McLaughlin DE, Meibom S, Veillet C (2011) A new look at the old star cluster NGC 6791. Astrophys J Lett 733:L1. https://doi.org/10.1088/2041-8205/733/1/L1. arXiv:1104.5473
Plummer HC (1911) On the problem of distribution in globular star clusters. Mon Not R Astron Soc 71:460–470. https://doi.org/10.1093/mnras/71.5.460
Portegies Zwart SF, McMillan SLW, Gieles M (2010) Annu Rev Astron Astrophys 48:431–493. https://doi.org/10.1146/annurev-astro-081309-130834. arXiv:1002.1961
Prantzos N, Charbonnel C (2006) On the self-enrichment scenario of galactic globular clusters: constraints on the IMF. Astron Astrophys 458:135–149. https://doi.org/10.1051/0004-6361:20065374. arXiv:astro-ph/0606112
Prantzos N, Hashimoto M, Nomoto K (1990) The s-process in massive stars—yields as a function of stellar mass and metallicity. Astron Astrophys 234:211–229
Prantzos N, Charbonnel C, Iliadis C (2007) Light nuclei in galactic globular clusters: constraints on the self-enrichment scenario from nucleosynthesis. Astron Astrophys 470:179–190. https://doi.org/10.1051/0004-6361:20077205. arXiv:0704.3331
Prantzos N, Charbonnel C, Iliadis C (2017) Revisiting nucleosynthesis in globular clusters. The case of NGC 2808 and the role of He and K. Astron Astrophys 608:A28. https://doi.org/10.1051/0004-6361/201731528. arXiv:1709.05819
Prieto JL, Gnedin OY (2008) Dynamical evolution of globular clusters in hierarchical cosmology. Astrophys J 689(2):919–935. https://doi.org/10.1086/591777. arXiv:astro-ph/0608069
Qian YZ, Woosley SE (1996) Nucleosynthesis in neutrino-driven winds. I. The physical conditions. Astrophys J 471:331. https://doi.org/10.1086/177973. arXiv:astro-ph/9611094
Raghavan D, McAlister HA, Henry TJ, Latham DW, Marcy GW, Mason BD, Gies DR, White RJ, ten Brummelaar TA (2010) A survey of stellar families: multiplicity of solar-type stars. Astrophys J Suppl 190:1–42. https://doi.org/10.1088/0067-0049/190/1/1. arXiv:1007.0414
Raiteri CM, Busso M, Gallino R, Picchio G, Pulone L (1991) S-process nucleosynthesis in massive stars and the weak component. I. Evolution and neutron captures in a 25 \(M_{\odot }\) star. Astrophys J 367:228–238. https://doi.org/10.1086/169622
Ramírez I, Meléndez J, Chanamé J (2012) Oxygen abundances in low- and high-\(\alpha \) field halo stars and the discovery of two field stars born in globular clusters. Astrophys J 757:164. https://doi.org/10.1088/0004-637X/757/2/164. arXiv:1208.3675
Read JI, Wilkinson MI, Evans NW, Gilmore G, Kleyna JT (2006) The tidal stripping of satellites. Mon Not R Astron Soc 366:429–437. https://doi.org/10.1111/j.1365-2966.2005.09861.x. arXiv:astro-ph/0506687
Reina-Campos M, Kruijssen JMD, Pfeffer J, Bastian N, Crain RA (2018) Dynamical cluster disruption and its implications for multiple population models in the E-MOSAICS simulations. Mon Not R Astron Soc 481(3):2851–2857. https://doi.org/10.1093/mnras/sty2451. arXiv:1809.03499
Renzini A (2008) Origin of multiple stellar populations in globular clusters and their helium enrichment. Mon Not R Astron Soc 391:354–362. https://doi.org/10.1111/j.1365-2966.2008.13892.x. arXiv:0808.4095
Renzini A (2017) Finding forming globular clusters at high redshifts. Mon Not R Astron Soc 469:L63–L67. https://doi.org/10.1093/mnrasl/slx057. arXiv:1704.04883
Renzini A, D’Antona F, Cassisi S, King IR, Milone AP, Ventura P, Anderson J, Bedin LR, Bellini A, Brown TM, Piotto G, van der Marel RP, Barbuy B, Dalessandro E, Hidalgo S, Marino AF, Ortolani S, Salaris M, Sarajedini A (2015) The Hubble Space Telescope UV legacy survey of galactic globular clusters—V. Constraints on formation scenarios. Mon Not R Astron Soc 454:4197–4207. https://doi.org/10.1093/mnras/stv2268. arXiv:1510.01468
Richer HB, Heyl J, Anderson J, Kalirai JS, Shara MM, Dotter A, Fahlman GG, Rich RM (2013) A dynamical signature of multiple stellar populations in 47 Tucanae. Astrophys J Lett 771:L15. https://doi.org/10.1088/2041-8205/771/1/L15. arXiv:1306.1226
Roederer IU, Mateo M, Bailey JI, Spencer M, Crane JD, Shectman SA (2016) Detailed chemical abundances in NGC 5824: another metal-poor globular cluster with internal heavy element abundance variations. Mon Not R Astron Soc 455:2417–2439. https://doi.org/10.1093/mnras/stv2462. arXiv:1510.06414
Rubenstein EP, Bailyn CD (1997) Hubble Space Telescope observations of the post-core-collapse globular cluster NGC 6752. II. A large main-sequence binary population. Astrophys J 474:701–709. https://doi.org/10.1086/303498
Rutledge GA, Hesser JE, Stetson PB (1997) Galactic globular cluster metallicity scale from the Ca II triplet II. Rankings, comparisons, and puzzles. Publ Astron Soc Pac 109:907–919. https://doi.org/10.1086/133959. arXiv:astro-ph/9707068
Ryu J, Lee MG (2018) Discovery of two new globular clusters in the Milky Way. Astrophys J Lett 863:L38. https://doi.org/10.3847/2041-8213/aad8b7. arXiv:1808.03455
Sakari CM, Venn KA, Irwin M, Aoki W, Arimoto N, Dotter A (2011) Detailed chemical abundances of four stars in the unusual globular cluster palomar 1. Astrophys J 740:106. https://doi.org/10.1088/0004-637X/740/2/106. arXiv:1107.5315
Salaris M, Cassisi S, Weiss A (2002) Red giant branch stars: the theoretical framework. Publ Astron Soc Pac 114(794):375–402. https://doi.org/10.1086/342498. arXiv:astro-ph/0201387
Salaris M, Weiss A, Ferguson JW, Fusilier DJ (2006) On the primordial scenario for abundance variations within globular clusters: the isochrone test. Astrophys J 645:1131–1137. https://doi.org/10.1086/504520. arXiv:astro-ph/0604137
Salaris M, Cassisi S, Pietrinferni A (2016) On the red giant branch mass loss in 47 Tucanae: constraints from the horizontal branch morphology. Astron Astrophys 590:A64. https://doi.org/10.1051/0004-6361/201628181. arXiv:1604.02874
Salinas R, Strader J (2015) No evidence for multiple stellar populations in the low-mass galactic globular cluster E 3. Astrophys J 809:169. https://doi.org/10.1088/0004-637X/809/2/169. arXiv:1506.00637
San Roman I, Muñoz C, Geisler D, Villanova S, Kacharov N, Koch A, Carraro G, Tautvaisiene G, Vallenari A, Alfaro EJ, Bensby T, Flaccomio E, Francois P, Korn AJ, Pancino E, Recio-Blanco A, Smiljanic R, Bergemann M, Costado MT, Damiani F, Heiter U, Hourihane A, Jofré P, Lardo C, de Laverny P, Masseron T, Morbidelli L, Sbordone L, Sousa SG, Worley CC, Zaggia S (2015) The Gaia-ESO Survey: detailed abundances in the metal-poor globular cluster NGC 4372. Astron Astrophys 579:A6. https://doi.org/10.1051/0004-6361/201525722. arXiv:1504.03497
Sandage AR (1953) The color-magnitude diagram for the globular cluster M 3. Astron J 58:61–75. https://doi.org/10.1086/106822
Santrich OJK, Pereira CB, Drake NA (2013) Chemical analysis of giant stars in the young open cluster NGC 3114. Astron Astrophys 554:A2. https://doi.org/10.1051/0004-6361/201220252. arXiv:1304.1004
Sarajedini A, Bedin LR, Chaboyer B, Dotter A, Siegel M, Anderson J, Aparicio A, King I, Majewski S, Marín-Franch A, Piotto G, Reid IN, Rosenberg A (2007) The ACS survey of galactic globular clusters. I. Overview and clusters without previous Hubble Space Telescope photometry. Astron J 133:1658–1672. https://doi.org/10.1086/511979. arXiv:astro-ph/0612598
Sarna MJ, De Greve JP (1996) Chemical evolution of algols. Q J R Astron Soc 37:11
Savino A, Massari D, Bragaglia A, Dalessandro E, Tolstoy E (2018) M13 multiple stellar populations seen with the eyes of Strömgren photometry. Mon Not R Astron Soc 474:4438–4446. https://doi.org/10.1093/mnras/stx3093. arXiv:1712.01284
Sbordone L, Bonifacio P, Marconi G, Buonanno R, Zaggia S (2005) Family ties: abundances in Terzan 7, a Sgr dSph globular cluster. Astron Astrophys 437:905–910. https://doi.org/10.1051/0004-6361:20042315. arXiv:astro-ph/0505307
Sbordone L, Bonifacio P, Buonanno R, Marconi G, Monaco L, Zaggia S (2007) The exotic chemical composition of the Sagittarius dwarf spheroidal galaxy. Astron Astrophys 465:815–824. https://doi.org/10.1051/0004-6361:20066385. arXiv:astro-ph/0612125
Sbordone L, Bonifacio P, Caffau E, Ludwig HG, Behara NT, González Hernández JI, Steffen M, Cayrel R, Freytag B, van’t Veer C, Molaro P, Plez B, Sivarani T, Spite M, Spite F, Beers TC, Christlieb N, François P, Hill V, (2010) The metal-poor end of the Spite plateau. I. Stellar parameters, metallicities, and lithium abundances. Astron Astrophys 522:A26. https://doi.org/10.1051/0004-6361/200913282. arXiv:1003.4510
Schaerer D, Charbonnel C (2011) A new perspective on globular clusters, their initial mass function and their contribution to the stellar halo and the cosmic reionization. Mon Not R Astron Soc 413:2297–2304. https://doi.org/10.1111/j.1365-2966.2011.18304.x. arXiv:1101.1073
Searle L, Zinn R (1978) Compositions of halo clusters and the formation of the galactic halo. Astrophys J 225:357–379. https://doi.org/10.1086/156499
Sheffield AA, Majewski SR, Johnston KV, Cunha K, Smith VV, Cheung AM, Hampton CM, David TJ, Wagner-Kaiser R, Johnson MC, Kaplan E, Miller J, Patterson RJ (2012) Identifying contributions to the stellar halo from accreted, kicked-out, and in situ populations. Astrophys J 761:161. https://doi.org/10.1088/0004-637X/761/2/161. arXiv:1202.5310
Shen ZX, Bonifacio P, Pasquini L, Zaggia S (2010) Li–O anti-correlation in NGC 6752: evidence for Li-enriched polluting gas. Astron Astrophys 524:L2. https://doi.org/10.1051/0004-6361/201015738. arXiv:1011.1718
Shetrone MD, Côté P, Sargent WLW (2001) Abundance patterns in the Draco, Dextans, and Ursa minor dwarf spheroidal galaxies. Astrophys J 548:592–608. https://doi.org/10.1086/319022. arXiv:astro-ph/0009505
Simion IT, Belokurov V, Koposov SE (2019) Common origin for Hercules-Aquila and Virgo Clouds in Gaia DR2. Mon Not R Astron Soc 482:921–928. https://doi.org/10.1093/mnras/sty2744. arXiv:1807.01335
Smith GH (1987) The chemical inhomogeneity of globular clusters. Proc Astron Soc Pac 99:67–90. https://doi.org/10.1086/131958
Smith GH (2015) A comparison between the patterns of CN, O, and Na inhomogeneities on the red giant branch of Messier 71 using data from the literature. Proc Astron Soc Pac 127:1204. https://doi.org/10.1086/684099
Smith GH, Briley MM (2006) CN abundance inhomogeneities in the globular cluster Messier 13 (NGC 6205): results based on merged data sets from the literature. Proc Astron Soc Pac 118:740–753. https://doi.org/10.1086/503610
Smith GH, Martell SL (2003) Comparing deep mixing in globular cluster and halo field giants: carbon abundance data from the literature. Proc Astron Soc Pac 115:1211–1219. https://doi.org/10.1086/378078
Smith GH, Sneden C, Kraft RP (2002) A study of abundances of four giants in the low-mass globular cluster palomar 5. Astron J 123:1502–1508. https://doi.org/10.1086/338855
Smith VV, Suntzeff NB, Cunha K, Gallino R, Busso M, Lambert DL, Straniero O (2000) The chemical evolution of the globular cluster \(\omega \) Centauri (NGC 5139). Astron J 119:1239–1258. https://doi.org/10.1086/301276
Smith VV, Cunha K, Ivans II, Lattanzio JC, Campbell S, Hinkle KH (2005) Fluorine abundance variations in red giants of the globular cluster M4 and early-cluster chemical pollution. Astrophys J 633:392–397. https://doi.org/10.1086/444615. arXiv:astro-ph/0506763
Sneden C, Kraft RP, Shetrone MD, Smith GH, Langer GE, Prosser CF (1997) Star-To-star abundance variations among bright giants in the metal-poor globular cluster M15. Astron J 114:1964. https://doi.org/10.1086/118618
Sneden C, Ivans II, Kraft RP (2000) Do AGB stars differ chemically from RGB stars in globular clusters? Mem Soc Astron Ital 71:657–665 arXiv:astro-ph/0001018
Sobeck JS, Kraft RP, Sneden C, Preston GW, Cowan JJ, Smith GH, Thompson IB, Shectman SA, Burley GS (2011) The abundances of neutron-capture species in the very metal-poor globular cluster M15: a uniform analysis of red giant branch and red horizontal branch stars. Astron J 141:175. https://doi.org/10.1088/0004-6256/141/6/175. arXiv:1103.1008
Sollima A (2008) The evolution of the binary population in globular clusters: a full analytical computation. Mon Not R Astron Soc 388:307–322. https://doi.org/10.1111/j.1365-2966.2008.13387.x. arXiv:0804.4107
Sollima A, Pancino E, Ferraro FR, Bellazzini M, Straniero O, Pasquini L (2005) Metallicities, relative ages, and kinematics of stellar populations in \(\omega \) Centauri. Astrophys J 634:332–343. https://doi.org/10.1086/496945. arXiv:astro-ph/0509087
Sollima A, Ferraro FR, Bellazzini M, Origlia L, Straniero O, Pancino E (2007) Deep FORS1 observations of the double main sequence of \(\omega \) Centauri. Astrophys J 654:915–922. https://doi.org/10.1086/509711. arXiv:astro-ph/0609650
Sollima A, Beccari G, Ferraro FR, Fusi Pecci F, Sarajedini A (2007b) The fraction of binary systems in the core of 13 low-density Galactic globular clusters. Mon Not R Astron Soc 380:781–791. https://doi.org/10.1111/j.1365-2966.2007.12116.x. arXiv:0706.2288
Sollima A, Carballo-Bello JA, Beccari G, Ferraro FR, Pecci FF, Lanzoni B (2010) The fraction of binary systems in the core of five Galactic open clusters. Mon Not R Astron Soc 401:577–585. https://doi.org/10.1111/j.1365-2966.2009.15676.x. arXiv:0909.1277
Souto D, Cunha K, Smith V, Allende Prieto C, Pinsonneault M, Zamora O, García-Hernández DA, Mészáros S, Bovy J, García Pérez AE, Anders F, Bizyaev D, Carrera R, Frinchaboy PM, Holtzman J, Ivans I, Majewski SR, Shetrone M, Sobeck J, Pan K, Tang B, Villanova S, Geisler D (2016) Chemical abundances in a sample of red giants in the open cluster NGC 2420 from APOGEE. Astrophys J 830:35. https://doi.org/10.3847/0004-637X/830/1/35. arXiv:1607.06102
Spite M, Spite F, Gallagher AJ, Monaco L, Bonifacio P, Caffau E, Villanova S (2016) Abundances in a sample of turnoff and subgiant stars in NGC 6121 (M 4). Astron Astrophys 594:A79. https://doi.org/10.1051/0004-6361/201628759. arXiv:1608.03541
Spitzer L Jr (1969) Equipartition and the formation of compact nuclei in spherical stellar systems. Astrophys J Lett 158:L139. https://doi.org/10.1086/180451
Stanford LM, Da Costa GS, Norris JE, Cannon RD (2006) The age and metallicity relation of \(\omega \) Centauri. Astrophys J 647:1075–1092. https://doi.org/10.1086/505571. arXiv:astro-ph/0605612
Suntzeff NB (1981) Carbon and nitrogen abundances in the giant stars of the globular clusters M3 and M13. Astrophys J Suppl 47:1–32. https://doi.org/10.1086/190750
Suntzeff NB (1913) Kraft RP (1996) The abundance spread among giants and subgiants in the globular cluster \(\omega \) Centauri. Astron J 111. https://doi.org/10.1086/117930. arXiv:astro-ph/9601013
Suntzeff NB, Smith VV (1991) Carbon isotopic abundances in giant stars in the CN-bimodal globular clusters NGC 6752 and M4. Astrophys J 381:160–172. https://doi.org/10.1086/170638
Sweigart AV, Mengel JG (1979) Meridional circulation and CNO anomalies in red giant stars. Astrophys J 229:624–641. https://doi.org/10.1086/156996
Tailo M, Milone AP, Marino AF, D’Antona F, Lagioia E, Cordoni G (2019) Mass loss of different stellar populations in globular clusters the case of M4. Astrophys J 873:123. https://doi.org/10.3847/1538-4357/ab05cc. arXiv:1902:03803
Tang B, Geisler D, Friel E, Villanova S, Smiljanic R, Casey AR, Randich S, Magrini L, San Roman I, Muñoz C, Cohen RE, Mauro F, Bragaglia A, Donati P, Tautvaisiene G, Drazdauskas A, Ženoviene R, Snaith O, Sousa S, Adibekyan V, Costado MT, Blanco-Cuaresma S, Jiménez-Esteban F, Carraro G, Zwitter T, François P, Jofrè P, Sordo R, Gilmore G, Flaccomio E, Koposov S, Korn AJ, Lanzafame AC, Pancino E, Bayo A, Damiani F, Franciosini E, Hourihane A, Lardo C, Lewis J, Monaco L, Morbidelli L, Prisinzano L, Sacco G, Worley CC, Zaggia S (2017) The Gaia-ESO survey: the inner disk intermediate-age open cluster NGC 6802. Astron Astrophys 601:A56. https://doi.org/10.1051/0004-6361/201629883. arXiv:1702.01109
Tang B, Liu C, Fernández-Trincado JG, Geisler D, Shi J, Zamora O, Worthey G, Moreno E (2019) Chemical and kinematic analysis of CN-strong metal-poor field stars in LAMOST DR3. Astrophys J 871:58. https://doi.org/10.3847/1538-4357/aaf6b1. arXiv:1812.01656
Taylor M (2017) TOPCAT: desktop exploration of tabular data for astronomy and beyond. Informatics 4:18. https://doi.org/10.3390/informatics4030018. arXiv:1707.02160
Tiongco MA, Vesperini E, Varri AL (2016a) Kinematical evolution of tidally limited star clusters: the role of retrograde stellar orbits. Mon Not R Astron Soc 461(1):402–411. https://doi.org/10.1093/mnras/stw1341. arXiv:1606.06743
Tiongco MA, Vesperini E, Varri AL (2016b) Velocity anisotropy in tidally limited star clusters. Mon Not R Astron Soc 455:3693–3701. https://doi.org/10.1093/mnras/stv2574. arXiv:1511.02236
Tiongco MA, Vesperini E, Varri AL (2017) Kinematical evolution of tidally limited star clusters: rotational properties. Mon Not R Astron Soc 469:683–692. https://doi.org/10.1093/mnras/stx853. arXiv:1704.05918
Tiongco MA, Vesperini E, Varri AL (2019) Kinematical evolution of multiple stellar populations in star clusters. Mon Not R Astron Soc 455:3693–3701. https://doi.org/10.1093/mnras/stv2574. arXiv:1511.02236
Tomkin J, Lambert DL, Lemke M (1993) The chemical composition of Algol systems – V. Confirmation of carbon deficiencies in the primaries of eight systems. Mon Not R Astron Soc 265:581. https://doi.org/10.1093/mnras/265.3.581
Torrealba G, Belokurov V, Koposov SE (2019) Nine tiny star clusters in Gaia DR1, PS1, and DES. Mon Not R Astron Soc 484:2181–2197. https://doi.org/10.1093/mnras/stz071. arXiv:1805.06473
Trenti M, Heggie DC, Hut P (2007) Star clusters with primordial binaries—II. Dynamical evolution of models in a tidal field. Mon Not R Astron Soc 374:344–356. https://doi.org/10.1111/j.1365-2966.2006.11166.x. arXiv:astro-ph/0602409
Trenti M, Vesperini E, Pasquato M (2010) Tidal disruption, global mass function, and structural parameter evolution in star clusters. Astrophys J 708(2):1598–1610. https://doi.org/10.1088/0004-637X/708/2/1598. arXiv:0911.3394
Umeda H, Yoshida T (2017) Nucleosynthesis in spherical explosion models of core-collapse supernovae. In: Alsabti AW, Murdin P (eds) Handbook of supernovae. Springer, Cham, p 1753. https://doi.org/10.1007/978-3-319-21846-5_76
van den Bergh S (1967) On the helium abundance in the proto-galaxy. Proc Astron Soc Pac 79:460. https://doi.org/10.1086/128531
Vanbeveren D, Mennekens N, De Greve JP (2012) The effect of intermediate-mass close binaries on the chemical evolution of globular clusters. Astron Astrophys 543:A4. https://doi.org/10.1051/0004-6361/201118081. arXiv:1109.2713
VandenBerg DA, Brogaard K, Leaman R, Casagrande L (2013) The ages of 55 globular clusters as determined using an improved \({\Delta V^{\rm HB}_{\rm TO}}\) method along with color-magnitude diagram constraints, and their implications for broader issues. Astrophys J 775:134. https://doi.org/10.1088/0004-637X/775/2/134. arXiv:1308.2257
Vassiliadis E, Wood PR (1993) Evolution of low- and intermediate-mass stars to the end of the asymptotic giant branch with mass loss. Astrophys J 413:641–657. https://doi.org/10.1086/173033
Veljanoski J, Helmi A (2018) Flavours in the box of chocolates: chemical abundances of kinematic substructures in the nearby stellar halo, arXiv e-prints. arXiv:1804.06365
Ventura P, D’Antona F, Mazzitelli I, Gratton R (2001) Predictions for self-pollution in globular cluster stars. Astrophys J Lett 550:L65–L69. https://doi.org/10.1086/319496. arXiv:astro-ph/0103337
Ventura P, Caloi V, D’Antona F, Ferguson J, Milone A, Piotto GP (2009) The C+N+O abundances and the splitting of the subgiant branch in the globular cluster NGC 1851. Mon Not R Astron Soc 399:934–943. https://doi.org/10.1111/j.1365-2966.2009.15335.x. arXiv:0907.1765
Ventura P, D’Antona F, Di Criscienzo M, Carini R, D’Ercole A, Vesperini E (2012) Super-AGB-AGB evolution and the chemical inventory in NGC 2419. Astrophys J Lett 761:L30. https://doi.org/10.1088/2041-8205/761/2/L30. arXiv:1211.3857
Verbunt F, Lewin WHG, van Paradijs J (1989) Millisecond radio pulsars in globular clusters. Mon Not R Astron Soc 241:51–57. https://doi.org/10.1093/mnras/241.1.51
Vesperini E, Heggie DC (1997) On the effects of dynamical evolution on the initial mass function of globular clusters. Mon Not R Astron Soc 289(4):898–920. https://doi.org/10.1093/mnras/289.4.898. arXiv:astro-ph/9705073
Vesperini E, McMillan SLW, D’Antona F, D’Ercole A (2010) The fraction of globular cluster second-generation stars in the galactic halo. Astrophys J Lett 718:L112–L116. https://doi.org/10.1088/2041-8205/718/2/L112. arXiv:1007.1668
Vesperini E, McMillan SLW, D’Antona F, D’Ercole A (2011) Binary star disruption in globular clusters with multiple stellar populations. Mon Not R Astron Soc 416:355–360. https://doi.org/10.1111/j.1365-2966.2011.19046.x. arXiv:1106.0756
Vesperini E, McMillan SLW, D’Antona F, D’Ercole A (2013) Dynamical evolution and spatial mixing of multiple population globular clusters. Mon Not R Astron Soc 429:1913–1921. https://doi.org/10.1093/mnras/sts434. arXiv:1212.2651
Vesperini E, Hong J, Webb JJ, D’Antona F, D’Ercole A (2018) Evolution of the stellar mass function in multiple-population globular clusters. Mon Not R Astron Soc 476(2):2731–2742. https://doi.org/10.1093/mnras/sty407. arXiv:1803.02381
Villanova S, Piotto G, Gratton RG (2009) The helium content of globular clusters: light element abundance correlations and HB morphology. I. NGC 6752. Astron Astrophys 499:755–763. https://doi.org/10.1051/0004-6361/200811493. arXiv:0903.3924
Villanova S, Geisler D, Carraro G, Moni Bidin C, Muñoz C (2013) Ruprecht 106: the first single population globular cluster? Astrophys J 778:186. https://doi.org/10.1088/0004-637X/778/2/186. arXiv:1310.5900
Villanova S, Geisler D, Gratton RG, Cassisi S (2014) The metallicity spread and the age–metallicity relation of \(\omega \) Centauri. Astrophys J 791:107. https://doi.org/10.1088/0004-637X/791/2/107. arXiv:1406.5069
Villanova S, Monaco L, Moni Bidin C, Assmann P (2016) A spectroscopic study of the globular Cluster NGC 4147. Mon Not R Astron Soc 460:2351–2359. https://doi.org/10.1093/mnras/stw1146. arXiv:1605.03408
Villanova S, Moni Bidin C, Mauro F, Muñoz C, Monaco L (2017) A spectroscopic study of the globular cluster M28 (NGC 6626). Mon Not R Astron Soc 464:2730–2740. https://doi.org/10.1093/mnras/stw2509. arXiv:1610.01834
Villanova S, Carraro G, Geisler D, Monaco L, Assmann P (2018) NGC 6791: a probable bulge cluster without multiple populations. Astrophys J 867:34. https://doi.org/10.3847/1538-4357/aae4e5. arXiv:1809.09661
Wang B, Han Z (2012) Progenitors of type Ia supernovae. New Astron Rev 56:122–141. https://doi.org/10.1016/j.newar.2012.04.001. arXiv:1204.1155
Wang Y, Primas F, Charbonnel C, Van der Swaelmen M, Bono G, Chantereau W, Zhao G (2016) Sodium abundances of AGB and RGB stars in Galactic globular clusters. I. Analysis and results of NGC 2808. Astron Astrophys 592:A66. https://doi.org/10.1051/0004-6361/201628502. arXiv:1606.00973
Wang Y, Primas F, Charbonnel C, Van der Swaelmen M, Bono G, Chantereau W, Zhao G (2017) Sodium abundances of AGB and RGB stars in Galactic globular clusters. II. Analysis and results of NGC 104, NGC 6121, and NGC 6809. Astron Astrophys 607:A135. https://doi.org/10.1051/0004-6361/201730976. arXiv:1708.07634
Webb JJ, Reina-Campos M, Kruijssen JMD (2019) A systematic analysis of star cluster disruption by tidal shocks–I. Controlled N-body simulations and a new theoretical model. Mon Not R Astron Soc 486:5879–5894. https://doi.org/10.1093/mnras/stz1264. arXiv:1812.00014
Wilson OC, Aly MK (1956) The possible occurrence of \(\lambda \)5876 of He I in absorption in the spectra of certain late-type stars. Proc Astron Soc Pac 68:149. https://doi.org/10.1086/126901
Woolley RVDR (1966) Studies of the globular cluster \(\omega \) Centauri. I. Catalogue of magnitudes and proper motions. R Obs Ann 2:1–128
Worley CC, Hill V, Sobeck J, Carretta E (2013) Ba and Eu abundances in M 15 giant stars. Astron Astrophys 553:A47. https://doi.org/10.1051/0004-6361/201321097. arXiv:1302.6122
Yan L, Reid IN (1996) Discovery of six short-period eclipsing binaries in the globular cluster M5. Mon Not R Astron Soc 279:751–766. https://doi.org/10.1093/mnras/279.3.751
Yong D, Grundahl F (2008) An abundance analysis of bright giants in the globular cluster NGC 1851. Astrophys J Lett 672:L29. https://doi.org/10.1086/525850. arXiv:0711.1394
Yong D, Grundahl F, Johnson JA, Asplund M (2008a) Nitrogen abundances in giant stars of the globular cluster NGC 6752. Astrophys J 684:1159–1169. https://doi.org/10.1086/590658. arXiv:0806.0187
Yong D, Meléndez J, Cunha K, Karakas AI, Norris JE, Smith VV (2008b) Chemical abundances in giant stars of the tidally disrupted globular cluster NGC 6712 from high-resolution infrared spectroscopy. Astrophys J 689:1020–1030. https://doi.org/10.1086/592229. arXiv:0807.4558
Yong D, Grundahl F, D’Antona F, Karakas AI, Lattanzio JC, Norris JE (2009) A large C+N+O abundance spread in giant stars of the globular cluster NGC 1851. Astrophys J Lett 695:L62–L66. https://doi.org/10.1088/0004-637X/695/1/L62. arXiv:0902.1773
Yong D, Alves Brito A, Da Costa GS, Alonso-García J, Karakas AI, Pignatari M, Roederer IU, Aoki W, Fishlock CK, Grundahl F, Norris JE (2014a) Chemical abundances in bright giants of the globular cluster M62 (NGC 6266). Mon Not R Astron Soc 439:2638–2650. https://doi.org/10.1093/mnras/stu118. arXiv:1401.3784
Yong D, Roederer IU, Grundahl F, Da Costa GS, Karakas AI, Norris JE, Aoki W, Fishlock CK, Marino AF, Milone AP, Shingles LJ (2014b) Iron and neutron-capture element abundance variations in the globular cluster M2 (NGC 7089). Mon Not R Astron Soc 441:3396–3416. https://doi.org/10.1093/mnras/stu806. arXiv:1404.6873
Yong D, Grundahl F, Norris JE (2015) CNO abundances in the globular clusters NGC 1851 and NGC 6752. Mon Not R Astron Soc 446:3319–3329. https://doi.org/10.1093/mnras/stu2334. arXiv:1411.1474
Yong D, Da Costa GS, Norris JE (2016) Confirming the intrinsic abundance spread in the globular cluster NGC 6273 (M19) with calcium triplet spectroscopy. Mon Not R Astron Soc 460:1846–1853. https://doi.org/10.1093/mnras/stw1091. arXiv:1603.08606
Yuan Z, Smith MC, Xue XX, Li J, Liu C, Wang Y, Li L, Chang J (2019) Revealing the complicated story of the cetus stream with StarGO. Astrophys J 881(2):164. https://doi.org/10.3847/1538-4357/ab2e09. arXiv:1902.05248
Zamora-Avilés M, Vázquez-Semadeni E (2014) An evolutionary model for collapsing molecular clouds and their star formation activity. II. Mass dependence of the star formation rate. Astrophys J 793:84. https://doi.org/10.1088/0004-637X/793/2/84. arXiv:1308.4918
Zennaro M, Milone AP, Marino AF, Cordoni G, Lagioia EP, Tailo M (2019) Four stellar populations and extreme helium variation in the massive outer-halo globular cluster NGC 2419. Mon Not R Astron Soc 487:3239–3251. https://doi.org/10.1093/mnras/stz1477. arXiv:1902.02178
Zhang H, de Grijs R, Li C, Wu X (2018) No evidence of chemical abundance variations in the intermediate-age cluster NGC 1783. Astrophys J 853:186. https://doi.org/10.3847/1538-4357/aaa428. arXiv:1712.08161
Acknowledgements
This work has made use of BaSTI web tools and of TOPCAT (Taylor 2017). We thank Alessio Mucciarelli for having provided us with unpublished results, and Leo Girardi and Emanuele Dalessandro for very useful discussions. We also wish to thank Nate Bastian, Simon Campbell, Santi Cassisi, Franca D’Antona, Enrico Vesperini, and an anonymous referee for having read a draft version of the review and having provided very useful comments. Finally, we wish to thank Frank Schulz that made the many editing steps required to have this review publishable.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix 1: Summary of data for Milky Way GCs
This Appendix collects data for galactic GCs used in this review. We give information on the references used for the columns in Tables 6, 7, and 8 in the following.
For Table 6:
Col 1: Designation
Col 2–3: \(R_{\mathrm{per}}\) and \(R_{\mathrm{apo}}\) in kpc from Baumgardt et al. (2019)
Col 4–5–6–7–8–9: dMY, Ymed, Ymax, Ymax–Ymed, delta(B–V), delta(V–I) from Gratton et al. (2010a)
For Table 7:
Col 1: Designation
Col 2–3–4–5: dY2g1G, err, dYmax, err from Milone et al. (2018c) and Zennaro et al. (2019)
Col 6: [Fe/H] from Carretta (2019)
Col 7–8: d[Fe/H], err from Bragaglia et al. (2010a) (NGC 6402 from Johnson et al. 2019)
Col 9–10: \(\log {M_{\mathrm{fin}}}\), \(\log {M_{\mathrm{in}}}\) from Baumgardt et al. (2019)
For Table 8:
Col 1: Designation
Col 2–3: IQR(Na/O),Source: (1) Gratton et al. (2006, 2007); Carretta et al. (2007, 2009c, 2009b, 2010b, 2011b, 2013a, 2014, 2015, 2017); Bragaglia et al. (2015, 2017); Carretta et al. (2018) (2) Villanova et al. (2016; 3) San Roman et al. (2015; 4) Boberg et al. (2015, 2016; 5) Marino et al. (2011a; 6) Kraft et al. (1992; 7) Marino et al. (2015; 8) Smith et al. (2002; 9) Mucciarelli et al. (2013; 10) Pancino et al. (2017; 11) Koch and McWilliam (2014; 12) Johnson et al. (2016; 13) Johnson et al. (2017a); (14) Johnson et al. (2017b; 15) Johnson et al. (2015; 16) Yong et al. (2014a; 17) Feltzing et al. (2009; 18) Mucciarelli et al. (2016); Massari et al. (2017; 19) Muñoz et al. (2017; 20) Villanova et al. (2017; 21) Marino et al. (2009; 22) O’Malley et al. (2017; 23) Kacharov et al. (2013; 24) Kraft et al. (1998; 25) Yong et al. (2014b; 26) Çalışkan et al. (2012); (27) Cohen (2004; 28) Villanova et al. (2013; 29) Muñoz et al. (2018; 30) Mucciarelli et al. (2018; 31) Johnson et al. (2018; 32) Sbordone et al. (2007; 33) Johnson et al. (2019)
Col 4: IQR(Al/Mg) from Carretta et al. (2010b) and others determination from this group; only 1 digit: Mészáros et al. (2015)
Col 5–6–7–8–9: dRGB, err, f(FG), err, GC type from Milone et al. (2017) and Zennaro et al. (2019)
Col 10: spectroscopic d[Al/Mg] from Milone et al. (2018c)
Appendix 2: Summary of data for MC clusters
This Appendix collects data for extra-galactic massive clusters used in this review (Tables 9, 10). References for individual columns are as follows:
Rights and permissions
About this article
Cite this article
Gratton, R., Bragaglia, A., Carretta, E. et al. What is a globular cluster? An observational perspective. Astron Astrophys Rev 27, 8 (2019). https://doi.org/10.1007/s00159-019-0119-3
Received:
Published:
DOI: https://doi.org/10.1007/s00159-019-0119-3