Abstract
In survival analyses, the log-rank test is the standard approach to comparison of survival distributions estimated from independent groups. The semiparametric proportional hazards model uses the hazard function as the conduit to assess the influence of covariates x on the survival distribution of an event time T. The accelerated failure time model aligned closely to standard linear regression can estimate summary features such as the mean and percentiles of the survival distribution as functions of x. However, a full specification of a parametric distribution is often needed to analyze a model for \( E(\log T|{\mathbf{x}}) \). A different approach is to model the restricted mean survival time \( E(\hbox{min} (T,\tau )|{\mathbf{x}}) \). The specified time horizon \( \tau \) is informed by applications. All approaches must account for censoring in event times. We review analyses for restricted mean survival time based on the method of inverse-probability of censoring weighting, and on pseudo observations and a discussion on specified parametric models. As illustration, we apply the methods to a data set on relapse-free survival time in patients who underwent bone marrow transplantation.
Similar content being viewed by others
References
Royston P, Parmar MKB (2013) Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome. BMC Med Res Methodol. https://doi.org/10.1186/1471-2288-13-152
Andersen PK, Borgan O, Gill RD, Keiding N (1993) Statistical models based on counting processes. Springer, New York
Tian L, Zhao LH, Wei LJ (2014) Predicting the restricted mean event time with the subject’s baseline covariates in survival analysis. Biostatistics 15(2):222–233. https://doi.org/10.1093/biostatistics/kxt050
Andersen PK, Hansen MG, Klein JP (2004) Regression analysis of restricted mean survival time based on pseudo-observations. Lifetime Data Anal 10(4):335–350. https://doi.org/10.1007/s10985-004-4771-0
Fiocco M, Putter H, van Houwelingen HC (2008) Reduced-rank proportional hazards regression and simulation-based prediction for multi-state models. Stat Med 27(21):4340–4358. https://doi.org/10.1002/sim.3305
Houwelingen HCV, Putter H (2012) Dynamic prediction in clinical survival analysis. CRC Press, Boca Raton
Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, New York
Gardiner JC, Luo Z, Tang X, Ramamoorthi RV (2014) Fitting heavy-tailed distributions to health care data by parametric and bayesian methods. J Stat Theory Pract 8(4):619–652
McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, New York
Wooldridge JM (2007) Inverse probability weighted estimation for general missing data problems. J Econom 141(2):1281–1301
Laurie DP (1997) Calculation of Gauss–Kronrod quadrature rules. Math Comput 66(219):1133–1145. https://doi.org/10.1090/s0025-5718-97-00861-2
Andersen PK, Perme MP (2010) Pseudo-observations in survival analysis. Stat Methods Med Res 19(1):71–99. https://doi.org/10.1177/0962280209105020
Logan BR, Wang T (2014) Pseudo-value regression models. In: Ibrahim JG, Scheike TH, Klein JP, van Houwelingen HC (eds) Handbook of survival analysis. CRC Press, Boca Raton
Wang X, Schaubel DE (2018) Modeling restricted mean survival time under general censoring mechanisms. Lifetime Data Anal 24(1):176–199. https://doi.org/10.1007/s10985-017-9391-6
Zhang C, Wu Y, Yin G (2020) Restricted mean survival time for interval-censored data. Stat Med. https://doi.org/10.1002/sim.8699
Graw F, Gerds TA, Schumacher M (2009) On pseudo-values for regression analysis in competing risks models. Lifetime Data Anal 15(2):241–255. https://doi.org/10.1007/s10985-008-9107-z
Klein JP, Andersen PK (2005) Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function. Biometrics 61(1):223–229. https://doi.org/10.1111/j.0006-341X.2005.031209.x
Calkins KL, Canan CE, Moore RD, Lesko CR, Lau B (2018) An application of restricted mean survival time in a competing risks setting: comparing time to ART initiation by injection drug use. BMC Med Res Methodol. https://doi.org/10.1186/s12874-018-0484-z
Kloecker DE, Davies MJ, Khunti K, Zaccardi F (2020) Uses and limitations of the restricted mean survival time: illustrative examples from cardiovascular outcomes and mortality trials in type 2 diabetes. Ann Internal Med 172(8):541. https://doi.org/10.7326/m19-3286
Hasegawa T, Misawa S, Nakagawa S, Tanaka S, Tanase T, Ugai H et al (2020) Restricted mean survival time as a summary measure of time-to-event outcome. Pharm Stat 19(4):436–453. https://doi.org/10.1002/pst.2004
Staerk L, Preis SR, Lin HH, Casas JP, Lunetta K, Weng LC et al (2020) Novel risk modeling approach of atrial fibrillation with restricted mean survival times application in the framingham heart study community-based cohort. Circ-Cardiovasc Qual Outcomes. https://doi.org/10.1161/circoutcomes.119.005918
Lin DY (2003) Regression analysis of incomplete medical cost data. Stat Med 22(7):1181–1200
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This paper is intended for the special issue “Celebrating the Centenary of Professor C R Rao”.
Appendix
Appendix
1.1 Adjustment for Estimated Weights in the IPCW Method
In the second term of Eq. (10) use \( \hat{w}_{i} - w_{i} = - \delta_{i}^{ * } \left( {\frac{{\hat{G}(R_{i} - ) - G(R_{i} - )}}{{\hat{G}(R_{i} - )G(R_{i} - )}}} \right) \) and the representation for the KM estimator of the censoring distribution from Anderson et al., [2] or Lin [22],
\( \left( {\frac{{\hat{G}(t) - G(t)}}{G(t)}} \right) = - \int_{0}^{t} {\frac{{\hat{G}(s - )}}{G(s)}} \frac{{dM^{c} (s)}}{Y(s)} \approx - \sum\nolimits_{i = 1}^{n} {\int_{0}^{t} {\frac{{dM_{i}^{c} (u)}}{Y(u)}} } \) where \( Y_{i} (u) = [C_{i} \wedge T_{i} \ge u],\,\,\,Y(u) = \sum\nolimits_{i = 1}^{n} {Y_{i} (u)} \)
\( M_{i}^{c} (t) = [C_{i} \wedge T_{i} \le t,\delta_{i} = 0] - \int_{0}^{t} {[C_{i} \wedge T_{i} \ge u]} \,dA^{c} (u) \) and \( A^{c} \) is the integrated hazard of C estimated by \( \int_{0}^{t} {\frac{{dN^{c} (u)}}{Y(u)}} \) where \( N^{c} (t) = \sum\nolimits_{i = 1}^{n} {[C_{i} \wedge T_{i} \le t,\delta_{i} = 0]} \). Next,
\( = \sum\nolimits_{i = 1}^{n} {w_{i} (R_{i} - g^{ - 1} ({\mathbf{x^{\prime}}}_{i} \beta )){\mathbf{x}}_{i} \left( {\sum\nolimits_{j = 1}^{n} {\int_{0}^{\infty } {\frac{{[u < R_{i} ]dM_{j}^{c} (u)}}{Y(u)}} } } \right)} \) replacing \( \hat{w}_{i} \) by \( w_{i} \).
Let \( {\mathbf{Q}}(t) = \sum\nolimits_{i = 1}^{n} {w_{i} (R_{i} - g^{ - 1} ({\mathbf{x^{\prime}}}_{i} \beta ))[R_{i} > t]{\mathbf{x}}_{i} /Y(t)} \, \).
The previous term is (place all inside the integral)
\( \sum\nolimits_{j = 1}^{n} {\int_{0}^{\infty } {\left\{ {\sum\nolimits_{i = 1}^{n} {w_{i} (R_{i} - g^{ - 1} ({\mathbf{x^{\prime}}}_{i} \beta )){\mathbf{x}}_{i} } [R_{i} > u]} \right\}\frac{{dM_{j}^{c} (u)}}{Y(u)}} } = \sum\nolimits_{j = 1}^{n} {\int_{0}^{\infty } {{\mathbf{Q}}(u)} dM_{j}^{c} (u)} \), and let \( \psi_{j} = \int_{0}^{\infty } {{\mathbf{Q}}(u)\,} dM_{j}^{c} (u) \)
Finally, \( \begin{aligned} \sum\nolimits_{i = 1}^{n} {\hat{w}_{i} } (R_{i} - g^{ - 1} ({\mathbf{x^{\prime}}}_{i} \beta )){\mathbf{x}}_{i} & = \sum\nolimits_{i = 1}^{n} {w_{i} } (R_{i} - g^{ - 1} ({\mathbf{x^{\prime}}}_{i} \beta )){\mathbf{x}}_{i} + \sum\nolimits_{i = 1}^{n} {(\hat{w}_{i} - w_{i} } )(R_{i} - g^{ - 1} ({\mathbf{x^{\prime}}}_{i} \beta )){\mathbf{x}}_{i} \\ & = \sum\nolimits_{i = 1}^{n} {\left[ {\eta_{i} + \psi_{i} } \right]} \\ \end{aligned} \).
Rights and permissions
About this article
Cite this article
Gardiner, J.C. Restricted Mean Survival Time Estimation: Nonparametric and Regression Methods. J Stat Theory Pract 15, 6 (2021). https://doi.org/10.1007/s42519-020-00144-1
Accepted:
Published:
DOI: https://doi.org/10.1007/s42519-020-00144-1