iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/10.1007/s11517-023-02983-z?fromPaywallRec=false
Driving fatigue detection based on brain source activity and ARMA model | Medical & Biological Engineering & Computing Skip to main content
Log in

Driving fatigue detection based on brain source activity and ARMA model

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Fatigue among drivers is a significant issue in society, and according to organizational reports, it substantially contributes to accidents. So accurate fatigue detection in drivers plays a crucial role in reducing the number of people fatalities or injured resulting from accidents. Several methods are proposed for fatigue driver recognition among which electroencephalography (EEG) is one. This paper proposed a method for fatigue recognition by EEG signals with extracted features from source and sensor spaces. The proposed method starts with preprocessing by applying filtering and artifact rejection. Then source localization methods are applied to EEG signals for active source extraction. A multivariate autoregressive (MVAR) model is fitted to selected sources, and a dual Kalman filter is applied to estimate the source activity and their relationships. Then multivariate autoregressive moving average (ARMA) is fitted between EEG and source activity signals. Features are extracted from model parameters, source relationship matrix, and wavelet transform of EEG and source activity signals. The novelty of this approach is the use of ARMA model between source activities (as input) and EEG signals (as output) and feature extraction from source relations. Relevant features are selected using a combination of RelifF and neighborhood component analysis (NCA) methods. Three classifiers, namely k-nearest neighbor (KNN), support vector machine (SVM), and naive Bayesian (NB) classifiers, are employed to classify drivers. To improve performance, the final label for fatigue detection is calculated by combining these classifiers using the voting method. The results demonstrate that the proposed method accurately recognizes and classifies fatigued drivers with the ensemble classifiers in comparison with other methods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ziwu R, Rihui L, Bin C, Hongmiao Z, Ma Y, Wang C, Lin Y, Yingchun Z (2023) EEG-based driving fatigue detection using a two-level learning hierarchy radial basis function. Front Neurorobot (15). https://doi.org/10.3389/fnbot.2021.618408

  2. Bose R, Wang H, Dragomir A, Thakor N, Bezerianos A, Li J (2019) Regression-based continuous driving fatigue estimation: toward practical implementation. IEEE Trans Cogn Develop Syst. https://doi.org/10.1109/TCDS.2019.2929858

  3. Budak U, Bajaj V, Akbulut Y, Atila O, Sengur A (2019) An effective hybrid model for EEG-based drowsiness detection. IEEE Sens J 19(17):7624–7631. https://doi.org/10.1109/JSEN.2019.2917850

    Article  Google Scholar 

  4. Chai R, Naik GR, Nguyen TN, Ling SH, Tran Y, Craig A et al (2017) Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system. IEEE J Biomed Health Inform 21(3):715–724. https://doi.org/10.1109/JBHI.2016.2532354

    Article  PubMed  Google Scholar 

  5. Charbonnier S, Roy RN, Bonnet S, Campagne A (2016) ‘EEG index for control operators’ mental fatigue monitoring using interactions between brain regions. Expert Syst Appl 52:91–98. https://doi.org/10.1016/j.eswa.2016.01.013

    Article  Google Scholar 

  6. Cheng EJ, Young K-Y, Lin C-T (2018) Image-based EEG signal processing for driving fatigue prediction. In: 2018 International Automatic Control Conference (CACS), Taoyuan, pp 1–5. https://doi.org/10.1109/CACS.2018.8606734

  7. Qiu T (2019) Data for: research on fatigue driving detection based on adaptive multi-scale entropy. Mendeley Data V1. https://doi.org/10.17632/dpgvc22rth.1

  8. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

    Article  PubMed  Google Scholar 

  9. Dimitrakopoulos GN et al (2017) Driving mental fatigue classification based on brain functional connectivity. In: Boracchi G, Iliadis L, Jayne C, Likas A (eds) Engineering applications of neural networks. EANN 2017. Communications in computer and information science, vol 744. Springer, Cham. https://doi.org/10.1007/978-3-319-65172-9_39

  10. Driver alertness detection using CNN-BiLSTM and implementation on ARM-based SBC (2020) INFOCOMP J Comput Sci, 19(2), 68-77. https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/1006.

  11. Gao ZK, Li YL, Yang YX, Ma C (2019) A recurrence network-based convolutional neural network for fatigue driving detection from EEG. Chaos 29(11):113126. https://doi.org/10.1063/1.5120538

    Article  MathSciNet  PubMed  Google Scholar 

  12. Gharagozlou F, Nasl Saraji G, Mazloumi A, Nahvi A, Motie Nasrabadi A, Rahimi Foroushani A et al (2015a) Detecting driver mental fatigue based on EEG alpha power changes during simulated driving. Iran J Public Health 44(12):1693–1700

    PubMed  PubMed Central  Google Scholar 

  13. Golz M, Sommer D, Mandic D, Trutschel U (2007) Feature fusion for the detection of microsleep events. J VLSI Sig Proc 49:329–342. https://doi.org/10.1007/s11265-007-0083-4

    Article  Google Scholar 

  14. Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M et al (2008) Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil 5(1):25. https://doi.org/10.1186/1743-0003-5-25

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gurudath N, Riley H (2014) Drowsy driving detection by EEG analysis using wavelet transform and K-means clustering. Procedia Comput Sci 34:400–409. https://doi.org/10.1016/j.procs.2014.07.045

    Article  Google Scholar 

  16. Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A et al (2007) Review on solving the forward problem in EEG source analysis. J Neuroeng Rehabil 4(1):46. https://doi.org/10.1186/1743-0003-4-46

    Article  PubMed  PubMed Central  Google Scholar 

  17. Harvy J, Sigalas E, Thakor N, Bezerianos A, Li J (2018) Performance improvement of driving fatigue identification based on power spectra and connectivity using feature level and decision level fusions. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 102–105

    Chapter  Google Scholar 

  18. Harvy J, Thakor NV, Bezerianos A, Li J (2019) Between-frequency topographical and dynamic high-order functional connectivity for driving drowsiness assessment. IEEE Trans Neural Syst Rehabil Eng 1-1. https://doi.org/10.1109/TNSRE.2019.2893949

  19. Hu J (2017) Comparison of different features and classifiers for driver fatigue detection based on a single EEG channel. Comput Math Methods Med 2017:5109530. https://doi.org/10.1155/2017/5109530

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hu J, Min J (2018) Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model. Cogn Neurodyn 12(4):431–440. https://doi.org/10.1007/s11571-018-9485-1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xue-Qin H, Zheng W-L, Lu B-L (2016) Driving fatigue detection with fusion of EEG and forehead EOG. In: 2016 International Joint Conference on Neural Networks (IJCNN), vol 2016, Vancouver, pp 897–904. https://doi.org/10.1109/IJCNN.2016.7727294

  22. Inagaki K, Wagatsuma N, Nobukawa S (2021) The effects of driving experience on the P300 event-related potential during the perception of traffic scenes. Int J Environ Res Public Health 18(19). https://doi.org/10.3390/ijerph181910396

  23. Ingdal M, Johnsen R, Harrington DA (2019) The Akaike information criterion in weighted regression of immittance data. Electrochim Acta 317:648–653. https://doi.org/10.1016/j.electacta.2019.06.030

    Article  CAS  Google Scholar 

  24. Jap BT, Lal S, Fischer P, Bekiaris E (2009) Using EEG spectral components to assess algorithms for detecting fatigue. Expert Syst Appl 36(2, Part 1):2352–2359. https://doi.org/10.1016/j.eswa.2007.12.043

    Article  Google Scholar 

  25. Jatoi MA, Kamel N, Malik AS, Faye I (2014) EEG based brain source localization comparison of sLORETA and eLORETA. Australas Phys Eng Sci Med 37(4):713–721. https://doi.org/10.1007/s13246-014-0308-3

    Article  PubMed  Google Scholar 

  26. Jing D, Liu D, Zhang S, Guo Z (2020a) Fatigue driving detection method based on EEG analysis in low-voltage and hypoxia plateau environment. Int J Transp Sci Technol 9. https://doi.org/10.1016/j.ijtst.2020.03.008

  27. Jing D, Liu D, Zhang S, Guo Z (2020b) Fatigue driving detection method based on EEG analysis in low-voltage and hypoxia plateau environment. Int J Transp Sci Technol 9(4):366–376. https://doi.org/10.1016/j.ijtst.2020.03.008

    Article  Google Scholar 

  28. Khushaba RN, Kodagoda S, Lal S, Dissanayake G (2011) Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm. IEEE Trans Biomed Eng 58(1):121–131. https://doi.org/10.1109/TBME.2010.2077291

    Article  PubMed  Google Scholar 

  29. King LM, Nguyen HT, Lal SK (2006) Early driver fatigue detection from electroencephalography signals using artificial neural networks. Conf Proc IEEE Eng Med Biol Soc 2006:2187–2190. https://doi.org/10.1109/iembs.2006.259231

    Article  CAS  PubMed  Google Scholar 

  30. Lal S, Craig A, Boord P, Kirkup L, Nguyen H (2003) Development of an algorithm for an EEG-based driver fatigue countermeasure. J Safety Res 34:321–328. https://doi.org/10.1016/S0022-4375(03)00027-6

    Article  PubMed  Google Scholar 

  31. Lal SK, Craig A (2001) A critical review of the psychophysiology of driver fatigue. Biol Psychol 55(3):173–194. https://doi.org/10.1016/s0301-0511(00)00085-5

    Article  CAS  PubMed  Google Scholar 

  32. Li G, Huang S, Xu W, Jiao W, Jiang Y, Gao Z et al (2020) The impact of mental fatigue on brain activity: a comparative study both in resting state and task state using EEG. BMC Neurosci 21(1):20–20. https://doi.org/10.1186/s12868-020-00569-1https://www.unboundmedicine.com/medline/citation/32398004/The_impact_of_mental_fatigue_on_brain_activity:_a_comparative_study_both_in_resting_state_and_task_state_using_EEG

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li P, Jiang W, Fei S (2016) Single-channel EEG-based mental fatigue detection based on deep belief network. Annu Int Conf IEEE Eng Med Biol Soc:367–370. https://doi.org/10.1109/EMBC.2016.7590716

  34. Li W, He Q-C, Fan X-M, Fei Z-M (2012) Evaluation of driver fatigue on two channels of EEG data. Neurosci Lett 506(2):235–239. https://doi.org/10.1016/j.neulet.2011.11.014

    Article  CAS  PubMed  Google Scholar 

  35. Liu J, Zhang C, Zheng C (2010a) EEG-based estimation of mental fatigue by using KPCA–HMM and complexity parameters. Biomed Signal Process Control 5(2):124–130. https://doi.org/10.1016/j.bspc.2010.01.001

  36. Liu Y, Lan Z, Cui J, Sourina O, Müller-Wittig W (2019) EEG-based cross-subject mental fatigue recognition. In: 2019 International Conference on Cyberworlds (CW), vol 2019, Kyoto, pp 247–252. https://doi.org/10.1109/CW.2019.00048

  37. Luo H, Qiu T, Liu C, Huang P (2019) Research on fatigue driving detection using forehead EEG based on adaptive multi-scale entropy. Biomed Signal Process Control 51:50–58. https://doi.org/10.1016/j.bspc.2019.02.005

    Article  Google Scholar 

  38. Ma Y, Chen B, Li R, Wang C, Wang J, She Q et al (2019) Driving fatigue detection from EEG using a modified PCANet method. Comput Intell Neurosci 2019:4721863. https://doi.org/10.1155/2019/4721863

    Article  PubMed  PubMed Central  Google Scholar 

  39. Makeig S, Onton J (2012) ERP features and EEG dynamics: an ICA perspective. The Oxford Handbook of Event-Related Potential Components. https://doi.org/10.1093/oxfordhb/9780195374148.013.0035

    Book  Google Scholar 

  40. Micheloyannis S, Pachou E, Stam CJ, Vourkas M, Erimaki S, Tsirka V (2006) Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett 402(3):273–277. https://doi.org/10.1016/j.neulet.2006.04.006

    Article  CAS  PubMed  Google Scholar 

  41. Onton J, Makeig S (2006) Information-based modeling of event-related brain dynamics. Prog Brain Res 159:99–120. https://doi.org/10.1016/s0079-6123(06)59007-7

    Article  PubMed  Google Scholar 

  42. Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342(6158):1238411. https://doi.org/10.1126/science.1238411

    Article  CAS  PubMed  Google Scholar 

  43. Portet S (2020) A primer on model selection using the Akaike Information Criterion. Infect Dis Model 5:111–128. https://doi.org/10.1016/j.idm.2019.12.010

    Article  PubMed  PubMed Central  Google Scholar 

  44. Putilov AA, Donskaya OG (2014) Alpha attenuation soon after closing the eyes as an objective indicator of sleepiness. Clin Exp Pharmacol Physiol 41(12):956–964. https://doi.org/10.1111/1440-1681.12311

    Article  CAS  PubMed  Google Scholar 

  45. Qingjun W, Yibo L, Xueping L (2018) Analysis of feature fatigue EEG signals based on wavelet entropy. Intern J Pattern Recognit Artif Intell 32. https://doi.org/10.1142/S021800141854023X

  46. Rajabioun M (2020) Motor imagery classification by active source dynamics. Biomed Signal Process Control 61:102028. https://doi.org/10.1016/j.bspc.2020.102028

    Article  Google Scholar 

  47. Rajabioun M, Motie Nasrabadi A, Shamsollahi MB, Coben R (2020) Effective brain connectivity estimation between active brain regions in autism using the dual Kalman-based method. Biomed Tech (Berl) 65(1):23–32. https://doi.org/10.1515/bmt-2019-0062

    Article  PubMed  Google Scholar 

  48. Rajabioun M, Nasrabadi AM, Shamsollahi MB (2017) Estimation of effective brain connectivity with dual Kalman filter and EEG source localization methods. Australas Phys Eng Sci Med 40(3):675–686. https://doi.org/10.1007/s13246-017-0578-7

    Article  PubMed  Google Scholar 

  49. Ren Z, Li R, Chen B, Zhang H, Ma Y, Wang C et al (2021a) EEG-based driving fatigue detection using a two-level learning hierarchy radial basis function (Original Research). Front Neurorobot 15. https://doi.org/10.3389/fnbot.2021.618408

  50. Ren Z, Li R, Chen B, Zhang H, Ma Y, Wang C et al (2021b) EEG-based driving fatigue detection using a two-level learning hierarchy radial basis function. Front Neurorobot 15:618408–618408. https://doi.org/10.3389/fnbot.2021.618408

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ridwan S, Thompson R, Jap B, Lal S, Fischer P (2009) Single channel wireless EEG: proposed application in train drivers. Afr J Inf Commun Technol 5. https://doi.org/10.5130/ajict.v5i2.1126

  52. Michael S, Michael S, Eike S, Wilhelm K (2011) Assessing drivers’ fatigue state under real traffic conditions using EEG alpha spindles. Driving Assessment Conference 6(2011):31–38. https://doi.org/10.17077/drivingassessment.1374

  53. Shalash W (2021) A deep learning cnn model for driver fatigue detection using single EEG channel. J Theor Appl Inf Technol 99:462–477

    Google Scholar 

  54. Shalash W (2019) Driver fatigue detection with single EEG channel using transfer learning. https://doi.org/10.1109/IST48021.2019.9010483

  55. Stancin I, Frid N, Cifrek M, Jovic A (2021) EEG signal multichannel frequency-domain ratio indices for drowsiness detection based on multicriteria optimization. Sensors (Basel, Switzerland) 21(20):6932. https://doi.org/10.3390/s21206932

    Article  PubMed  Google Scholar 

  56. Strijkstra AM, Beersma DG, Drayer B, Halbesma N, Daan S (2003) Subjective sleepiness correlates negatively with global alpha (8-12 Hz) and positively with central frontal theta (4-8 Hz) frequencies in the human resting awake electroencephalogram. Neurosci Lett 340(1):17–20. https://doi.org/10.1016/s0304-3940(03)00033-8

    Article  CAS  PubMed  Google Scholar 

  57. Tian S, Wang Y, Dong G, Pei W, Chen H (2018) Mental fatigue estimation using EEG in a vigilance task and resting states. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 1980–1983. https://doi.org/10.1109/EMBC.2018.8512666

  58. Tian Y, Cao J (2021) Fatigue driving detection based on electrooculography: a review. EURASIP J Image Video Process 2021(1):33. https://doi.org/10.1186/s13640-021-00575-1

    Article  MathSciNet  Google Scholar 

  59. Tuncer T, Dogan S, Subasi A (2021) EEG-based driving fatigue detection using multilevel feature extraction and iterative hybrid feature selection. Biomed Signal Process Control 68:102591. https://doi.org/10.1016/j.bspc.2021.102591

    Article  Google Scholar 

  60. Wang F, Wang H, Fu R (2018a) Real-time ECG-based detection of fatigue driving using sample entropy. Entropy 20(3). https://doi.org/10.3390/e20030196

  61. Wang H, Dragomir A, Abbasi NI, Li J, Thakor NV, Bezerianos A (2018b) A novel real-time driving fatigue detection system based on wireless dry EEG. Cogn Neurodyn 12(4):365–376. https://doi.org/10.1007/s11571-018-9481-5

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang H, Liu X, Li J, Xu T, Bezerianos A, Sun Y et al (2020) Driving fatigue recognition with functional connectivity based on phase synchronization. IEEE Trans Cogn Develop Syst. https://doi.org/10.1109/TCDS.2020.2985539

  63. Wang L, Johnson D, Lin Y (2021) Using EEG to detect driving fatigue based on common spatial pattern andsupport vector machine. Turk J Elec Eng & Comp Sci:1429–1444. https://doi.org/10.3906/elk-2008-83

  64. Xiong Y, Gao J, Yang Y, Yu X, Huang W (2016) Classifying driving fatigue based on combined entropy measure using EEG signals. Int J Control Autom Syst 9:329–338. https://doi.org/10.14257/ijca.2016.9.3.30

    Article  Google Scholar 

  65. Yang G, Lin Y, Bhattacharya P (2010) A driver fatigue recognition model based on information fusion and dynamic Bayesian network. Inform Sci 180(10):1942–1954. https://doi.org/10.1016/j.ins.2010.01.011

    Article  Google Scholar 

  66. Zeng C, Mu Z, Wang Q (2022) Classifying driving fatigue by using EEG signals. Comput Intell Neurosci 2022:1885677. https://doi.org/10.1155/2022/1885677

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zeng H, Yang C, Dai G, Qin F, Zhang J, Kong W (2018) EEG classification of driver mental states by deep learning. Cogn Neurodyn 12(6):597–606. https://doi.org/10.1007/s11571-018-9496-y

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang W, Wang F, Wu S, Xu Z, Ping J, Jiang Y (2020) Partial directed coherence based graph convolutional neural networks for driving fatigue detection. Rev Sci Instrum 91(7):074713. https://doi.org/10.1063/5.0008434

    Article  CAS  PubMed  Google Scholar 

  69. Zhao C, Zhao M, Liu J, Zheng C (2012) Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator. Accid Anal Prev 45:83–90. https://doi.org/10.1016/j.aap.2011.11.019

    Article  PubMed  Google Scholar 

  70. Zhao C, Zheng C, Zhao M, Liu J, Tu Y (2011) Automatic classification of driving mental fatigue with EEG by wavelet packet energy and KPCA-SVM. Int J Innov Comput Inf Control 3(7):1157–1168

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Rajabioun.

Ethics declarations

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript, and the authors have no relevant financial or non-financial interests to disclose. This article does not contain any studies with human participants or animals performed by any of the authors. All authors contributed to the study conception and design. The first draft of the manuscript was written by authors, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. This is an observational study and no ethical approval is required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadalizadeh, F., Rajabioun, M. & Feyzi, A. Driving fatigue detection based on brain source activity and ARMA model. Med Biol Eng Comput 62, 1017–1030 (2024). https://doi.org/10.1007/s11517-023-02983-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02983-z

Keywords

Navigation