Abstract
Two groups Ru(II) complexes, (1A-C and 2A) (A-C = 2,6-bis(2-benzimidazolyl)pyridines, bbpy, with various substituents at 2-, 5-, and 6-positions) have been prepared and applied for dye–sensitized solar cells (DSSC). The compounds were characterized by various techniques. The optical and electrical properties of sensitizers were investigated with UV–Vis absorption spectroscopy and cyclic voltammetry. High power conversion efficiencies up to 5.16%, have been achieved with 2Ae. Current–voltage characteristics of DSSCs clearly affected by the changing of the ligands at sensitizers. Additionally, computational studies show that locations of frontier molecular orbitals are significantly important for power–conversion efficiencies in DSSCs.
Similar content being viewed by others
References
B. Oregan, M. Gratzel, A. Low-Cost, High-efficiency solar-cell based on dye-sensitized colloidal Tio2 films. Nature 353, 737–740 (1991)
B. Pashaei, H. Shahroosvand, M. Graetzel, M.K. Nazeeruddin, Influence of ancillary ligands in dye-sensitized solar cells. Chem. Rev. 116, 9485–9564 (2016)
C. Coluccini, N. Manfredi, E.H. Calderon, M.M. Salamone, R. Ruffo, D. Roberto, M.G. Lobello, F. De Angelis, A. Abbotto, Photophysical and electrochemical properties of thiophene-based 2-arylpyridines. Eur. J. Org. Chem. 5587–5598 (2011). https://doi.org/10.1002/ejoc.201100651
F. Dogan, O. Dayan, M. Yurekli, B. Cetinkaya, Thermal study of ruthenium(II) complexes containing pyridine-2,6-diimines. J. Therm. Anal. Calorim. 91, 943–949 (2008)
H.N. Yi, J.A. Crayston, J.T.S. Irvine, Ruthenium complexes of 2-(2 ‘-pyridyl)benzimidazole as photosensitizers for dye-sensitized solar cells. Dalton Trans. 685–691 (2003). https://doi.org/10.1039/b208289f
D.B. Kuang, C. Klein, S. Ito, J.E. Moser, R. Humphry-Baker, S.M. Zakeeruddin, M. Gratzel, High molar extinction coefficient ion-coordinating ruthenium sensitizer for efficient and stable mesoscopic dye-sensitized solar cells. Adv. Funct. Mater. 17, 154–160 (2007)
C. Dragonetti, A. Valore, A. Colombo, M. Magni, P. Mussini, D. Roberto, R. Ugo, A. Valsecchi, V. Trifiletti, N. Manfredi, A. Abbotto, Ruthenium oxyquinolate complexes for dye-sensitized solar cells. Inorg. Chim. Acta 405, 98–104 (2013)
N. Abbotto, Manfredi, Electron-rich heteroaromatic conjugated polypyridine ruthenium sensitizers for dye-sensitized solar cells. Dalton Trans. 40, 12421–12438 (2011)
R. Tamura, T. Kono, S. Mori, M. Kimura, Structural effect of the pendant unit in thiocyanate-free RU-II sensitizers on the dye-sensitized solar cell performance. Eur. J. Inorg. Chem. 5041–5046 (2017). https://doi.org/10.1002/ejic.201700899
C. I.Erden, F.A. Cebeci, Kilicarslan, Synthesis and characterization of organic dyes containing 4,5-diazafluorene as efficient sensitizers for dye-sensitized solar cells. J. Coord. Chem. 70, 2334–2343 (2017)
T. Jella, M. Srikanth, R. Bolligarla, Y. Soujanya, S.P. Singha, L. Giribabu, Benzimidazole-functionalized ancillary ligands for heteroleptic Ru(II) complexes: synthesis, characterization and dye-sensitized solar cell applications. Dalton T 44, 14697–14706 (2015)
M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos, M. Gratzel, Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)Ruthenium(II) charge-transfer sensitizers (X = Cl −, Br −. I −, Cn −, and Scn −) on Nanocrystalline Tio2 Electrodes. J. Am. Chem. Soc. 115, 6382–6390 (1993)
M. Tadokoro, K. Nakasuji, Hydrogen bonded 2,2 ′-biimidazolate transition metal complexes as a tool of crystal engineering. Coord. Chem. Rev. 198, 205–218 (2000)
X.M. Xiao, M.A. Haga, T. Matsumurainoue, Y. Ru, A.W. Addison, K. Kano, Synthesis and proton transfer-linked redox tuning of ruthenium(II) complexes with tridentate 2,6-bis(benzimidazol-2-Yl)pyridine ligands. J. Chem. Soc. Dalton. 2477–2484 (1993). https://doi.org/10.1039/Dt9930002477
O. Kohle, S. Ruile, M. Gratzel, Ruthenium(II) charge-transfer sensitizers containing 4,4′-dicarboxy-2,2′-bipyridine. Synthesis, properties, and bonding mode of coordinated thio- and selenocyanates. Inorg. Chem. 35, 4779–4787 (1996)
S. Ruile, O. Kohle, P. Pechy, M. Gratzel, Novel sensitisers for photovoltaic cells. Structural variations of Ru(II) complexes containing 2,6-bis(1-methylbenzimidazol-2-yl)pyridine. Inorg. Chim. Acta 261, 129–140 (1997)
M.K. Nazeeruddin, E. Muller, R. Humphry-Baker, N. Vlachopoulos, M. Gratzel, Redox regulation in Ruthenium(II) polypyridyl complexes and their application in solar energy conversion., J. Chem. Soc. Dalton. 4571–4578 (1997). https://doi.org/10.1039/A704242f
S.C. Yu, S.J. Hou, W.K. Chan, Synthesis, metal complex formation, and electronic properties of a novel conjugate polymer with a tridentate 2,6-bis(benzimidazol-2-yl)pyridine ligand. Macromolecules 32, 5251–5256 (1999)
M.A. Haga, K. Wang, N. Kato, H. Monjushiro, Electrochemical properties of dinuclear Ru complex Langmuir-Blodgett films towards molecular electronics. Mol. Cryst. Liq. Crys. A 337, 89–92 (1999)
K.Z. Wang, M.A. Haga, Chemical transformation of amphiphilic Ru complexes containing 2,6-pyridinedicarboxylate at the air-water interface. Mol. Cryst. Liq. Cryst. 342, 225–230 (2000)
L. Mishra, R. Sinha, Mononuclear and binuclear ruthenium(III) polypyridyl complexes containing 2,6-bis(2 ‘-benzimidazyl)-pyridine as co-ligand: Synthesis, spectroscopic properties and redox activity. Indian J. Chem. A 39, 1131–1139 (2000)
V.G. Vaidyanathan, B.U. Nair, Synthesis, characterization and DNA binding studies of a ruthenium(II) complex. J. Inorg. Biochem. 91, 405–412 (2002)
M. Haga, T. Takasugi, A. Tomie, M. Ishizuya, T. Yamada, M.D. Hossain, M. Inoue, Molecular design of a proton-induced molecular switch based on rod-shaped Ru dinuclear complexes with bis-tridentate 2,6-bis(benzimidazol-2-yl) pyridine derivatives. Dalton Trans. 2069–2079 (2003). https://doi.org/10.1039/b300130j
V.G. Vaidyanathan, B.U. Nair, Synthesis, characterization and electrochemical studies of mixed ligand complexes of ruthenium(II) with DNA. Dalton Trans. 2842–2848 (2005). https://doi.org/10.1039/b502917a
D. Mishra, A. Barbieri, C. Sabatini, M.G.B. Drew, H.M. Figgle, W.S. Sheldrick, S.K. Chattopadhyay, Tuning of redox potential and visible absorption band of ruthenium(II) complexes of (benzimidazolyl) derivatives: synthesis, characterization, spectroscopic and redox properties, X-ray structures and DFT calculations. Inorg. Chim. Acta 360, 2231–2244 (2007)
A. Singh, B. Chetia, S.M. Mobin, G. Das, P.K. Iyer, B. Mondal, Ruthenium monoterpyridine complexes with 2,6-bis(benzimidazol-2-yl)pyridine: synthesis, spectral properties and structure. Polyhedron 27, 1983–1988 (2008)
J.J. Concepcion, J.W. Jurss, P.G. Hoertz, T.J. Meyer, Catalytic and surface-electrocatalytic water oxidation by redox mediator-catalyst assemblies. Angewandte Chemie 48, 9473–9476 (2009)
C. Bhaumik, S. Das, D. Saha, S. Dutta, S. Baitalik, Synthesis, characterization, photophysical, and anion-binding studies of luminescent heteroleptic bis-tridentate ruthenium(II) complexes based on 2,6-bis(benzimidazole-2-yl) pyridine and 4′-substituted 2,2 ‘:6 ‘,2 ‘’ terpyridine derivatives. Inorg. Chem. 49, 5049–5062 (2010)
S. Gunnaz, N. Ozdemir, S. Dayan, O. Dayan, B. Cetinkaya, Synthesis of ruthenium(II) complexes containing tridentate triamine (‘(NNN)over-cap ‘) and bidentate diamine ligands ((NN)over-cap ‘): as catalysts for transfer hydrogenation of ketones. Organometallics 30, 4165–4173 (2011)
O. Dayan, S. Dayan, I. Kani, B. Cetinkaya, Ruthenium(II) complexes bearing pyridine-based tridentate and bidentate ligands: catalytic activity for transfer hydrogenation of aryl ketones. Appl. Organomet. Chem. 26, 663–670 (2012)
O. Dayan, N. Ozdemir, Z. Serbetci, M. Dincer, B. Cetinkaya, O. Buyukgungor, Synthesis and catalytic activity of ruthenium(II) complexes containing pyridine-based tridentate triamines (‘NNN’) and pyridine carboxylate ligands (NO). Inorg. Chim. Acta 392, 246–253 (2012)
Q.Y. Yu, B.X. Lei, J.M. Liu, Y. Shen, L.M. Xiao, R.L. Qiu, D.B. Kuang, C.Y. Su, Ruthenium dyes with heteroleptic tridentate 2,6-bis(benzimidazol-2-yl)-pyridine for dye-sensitized solar cells: enhancement in performance through structural modifications. Inorg. Chim. Acta 392, 388–395 (2012)
K. Colladet, M. Nicolas, L. Goris, L. Lutsen, D. Vanderzande, Low-band gap polymers for photovoltaic applications. Thin Solid Films 451, 7–11 (2004)
R. Dennington, T. Keith, J.G. Millam, Version 4.1. 2 (Semichem Inc, 2007)
G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery Jr., T. Vreven, K. Kudin, J. Burant, J. Millam, Gaussian-03, Revision E. 01 (Gaussian Inc., Wallingford, CT, 2004)
A.D. Becke, Becke’s three parameter hybrid method using the LYP correlation functional. J. Chem. Phys. 98, 5648–5652 (1993)
C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988)
P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985)
W.R. Wadt, P.J. Hay, Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284–298 (1985)
P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985)
G. A.McLean, Chandler, Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 72, 5639–5648 (1980)
R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980)
N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008)
A.W. Addison, P.J. Burke, Synthesis of some imidazole-derived and pyrazole-derived chelating-agents. J. Heterocyclic Chem. 18, 803–805 (1981)
E. Inkaya, S. Gunnaz, N. Ozdemir, O. Dayan, M. Dincer, B. Cetinkaya, Synthesis, spectroscopic characterization, X-ray structure and DFT studies on 2,6-bis(1-benzyl-1H-benzo[d]imidazol-2-yl)pyridine. Spectrochimica Acta A 103, 255–263 (2013)
B. Chen, Y.H. Li, W. Yang, W. Luo, H.B. Wu, Efficient sky-blue and blue-green light-emitting electrochemical cells based on cationic iridium complexes using 1,2,4-triazole-pyridine as the ancillary ligand with cyanogen group in alkyl chain. Org. Electron. 12, 766–773 (2011)
Z.Z. Lu, J.D. Peng, A.K. Wu, C.H. Lin, C.G. Wu, K.C. Ho, Y.C. Lin, K.L. Lu, Heteroleptic ruthenium sensitizers with hydrophobic fused-thiophenes for use in efficient dye-sensitized solar cells., Eur. J. Inorg. Chem. 1214–1224 (2016). https://doi.org/10.1002/ejic.201501321
Acknowledgements
This research has been supported by The Scientific and Technical Research Council of Turkey (TUBİTAK) (Project No: 114Z439), TUBA and Çanakkale Onsekiz Mart University Scientific Research Projects Commission (Project Nos: BAP-2016-1024 and FDK-2018-1445).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dayan, O., Özdemir, N., Yakuphanoğlu, F. et al. Synthesis and photovoltaic properties of new Ru(II) complexes for dye-sensitized solar cells. J Mater Sci: Mater Electron 29, 11045–11058 (2018). https://doi.org/10.1007/s10854-018-9187-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-018-9187-9