iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/10.1007/s10854-018-9187-9?fromPaywallRec=true
Synthesis and photovoltaic properties of new Ru(II) complexes for dye-sensitized solar cells | Journal of Materials Science: Materials in Electronics Skip to main content

Advertisement

Log in

Synthesis and photovoltaic properties of new Ru(II) complexes for dye-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Two groups Ru(II) complexes, (1A-C and 2A) (A-C = 2,6-bis(2-benzimidazolyl)pyridines, bbpy, with various substituents at 2-, 5-, and 6-positions) have been prepared and applied for dye–sensitized solar cells (DSSC). The compounds were characterized by various techniques. The optical and electrical properties of sensitizers were investigated with UV–Vis absorption spectroscopy and cyclic voltammetry. High power conversion efficiencies up to 5.16%, have been achieved with 2Ae. Current–voltage characteristics of DSSCs clearly affected by the changing of the ligands at sensitizers. Additionally, computational studies show that locations of frontier molecular orbitals are significantly important for power–conversion efficiencies in DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Oregan, M. Gratzel, A. Low-Cost, High-efficiency solar-cell based on dye-sensitized colloidal Tio2 films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  2. B. Pashaei, H. Shahroosvand, M. Graetzel, M.K. Nazeeruddin, Influence of ancillary ligands in dye-sensitized solar cells. Chem. Rev. 116, 9485–9564 (2016)

    Article  Google Scholar 

  3. C. Coluccini, N. Manfredi, E.H. Calderon, M.M. Salamone, R. Ruffo, D. Roberto, M.G. Lobello, F. De Angelis, A. Abbotto, Photophysical and electrochemical properties of thiophene-based 2-arylpyridines. Eur. J. Org. Chem. 5587–5598 (2011). https://doi.org/10.1002/ejoc.201100651

  4. F. Dogan, O. Dayan, M. Yurekli, B. Cetinkaya, Thermal study of ruthenium(II) complexes containing pyridine-2,6-diimines. J. Therm. Anal. Calorim. 91, 943–949 (2008)

    Article  Google Scholar 

  5. H.N. Yi, J.A. Crayston, J.T.S. Irvine, Ruthenium complexes of 2-(2 ‘-pyridyl)benzimidazole as photosensitizers for dye-sensitized solar cells. Dalton Trans. 685–691 (2003). https://doi.org/10.1039/b208289f

  6. D.B. Kuang, C. Klein, S. Ito, J.E. Moser, R. Humphry-Baker, S.M. Zakeeruddin, M. Gratzel, High molar extinction coefficient ion-coordinating ruthenium sensitizer for efficient and stable mesoscopic dye-sensitized solar cells. Adv. Funct. Mater. 17, 154–160 (2007)

    Article  Google Scholar 

  7. C. Dragonetti, A. Valore, A. Colombo, M. Magni, P. Mussini, D. Roberto, R. Ugo, A. Valsecchi, V. Trifiletti, N. Manfredi, A. Abbotto, Ruthenium oxyquinolate complexes for dye-sensitized solar cells. Inorg. Chim. Acta 405, 98–104 (2013)

    Article  Google Scholar 

  8. N. Abbotto, Manfredi, Electron-rich heteroaromatic conjugated polypyridine ruthenium sensitizers for dye-sensitized solar cells. Dalton Trans. 40, 12421–12438 (2011)

    Article  Google Scholar 

  9. R. Tamura, T. Kono, S. Mori, M. Kimura, Structural effect of the pendant unit in thiocyanate-free RU-II sensitizers on the dye-sensitized solar cell performance. Eur. J. Inorg. Chem. 5041–5046 (2017). https://doi.org/10.1002/ejic.201700899

  10. C. I.Erden, F.A. Cebeci, Kilicarslan, Synthesis and characterization of organic dyes containing 4,5-diazafluorene as efficient sensitizers for dye-sensitized solar cells. J. Coord. Chem. 70, 2334–2343 (2017)

    Article  Google Scholar 

  11. T. Jella, M. Srikanth, R. Bolligarla, Y. Soujanya, S.P. Singha, L. Giribabu, Benzimidazole-functionalized ancillary ligands for heteroleptic Ru(II) complexes: synthesis, characterization and dye-sensitized solar cell applications. Dalton T 44, 14697–14706 (2015)

    Article  Google Scholar 

  12. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos, M. Gratzel, Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)Ruthenium(II) charge-transfer sensitizers (X = Cl −, Br −. I −, Cn −, and Scn −) on Nanocrystalline Tio2 Electrodes. J. Am. Chem. Soc. 115, 6382–6390 (1993)

    Article  Google Scholar 

  13. M. Tadokoro, K. Nakasuji, Hydrogen bonded 2,2 ′-biimidazolate transition metal complexes as a tool of crystal engineering. Coord. Chem. Rev. 198, 205–218 (2000)

    Article  Google Scholar 

  14. X.M. Xiao, M.A. Haga, T. Matsumurainoue, Y. Ru, A.W. Addison, K. Kano, Synthesis and proton transfer-linked redox tuning of ruthenium(II) complexes with tridentate 2,6-bis(benzimidazol-2-Yl)pyridine ligands. J. Chem. Soc. Dalton. 2477–2484 (1993). https://doi.org/10.1039/Dt9930002477

  15. O. Kohle, S. Ruile, M. Gratzel, Ruthenium(II) charge-transfer sensitizers containing 4,4′-dicarboxy-2,2′-bipyridine. Synthesis, properties, and bonding mode of coordinated thio- and selenocyanates. Inorg. Chem. 35, 4779–4787 (1996)

    Article  Google Scholar 

  16. S. Ruile, O. Kohle, P. Pechy, M. Gratzel, Novel sensitisers for photovoltaic cells. Structural variations of Ru(II) complexes containing 2,6-bis(1-methylbenzimidazol-2-yl)pyridine. Inorg. Chim. Acta 261, 129–140 (1997)

    Article  Google Scholar 

  17. M.K. Nazeeruddin, E. Muller, R. Humphry-Baker, N. Vlachopoulos, M. Gratzel, Redox regulation in Ruthenium(II) polypyridyl complexes and their application in solar energy conversion., J. Chem. Soc. Dalton. 4571–4578 (1997). https://doi.org/10.1039/A704242f

  18. S.C. Yu, S.J. Hou, W.K. Chan, Synthesis, metal complex formation, and electronic properties of a novel conjugate polymer with a tridentate 2,6-bis(benzimidazol-2-yl)pyridine ligand. Macromolecules 32, 5251–5256 (1999)

    Article  Google Scholar 

  19. M.A. Haga, K. Wang, N. Kato, H. Monjushiro, Electrochemical properties of dinuclear Ru complex Langmuir-Blodgett films towards molecular electronics. Mol. Cryst. Liq. Crys. A 337, 89–92 (1999)

    Article  Google Scholar 

  20. K.Z. Wang, M.A. Haga, Chemical transformation of amphiphilic Ru complexes containing 2,6-pyridinedicarboxylate at the air-water interface. Mol. Cryst. Liq. Cryst. 342, 225–230 (2000)

    Article  Google Scholar 

  21. L. Mishra, R. Sinha, Mononuclear and binuclear ruthenium(III) polypyridyl complexes containing 2,6-bis(2 ‘-benzimidazyl)-pyridine as co-ligand: Synthesis, spectroscopic properties and redox activity. Indian J. Chem. A 39, 1131–1139 (2000)

    Google Scholar 

  22. V.G. Vaidyanathan, B.U. Nair, Synthesis, characterization and DNA binding studies of a ruthenium(II) complex. J. Inorg. Biochem. 91, 405–412 (2002)

    Article  Google Scholar 

  23. M. Haga, T. Takasugi, A. Tomie, M. Ishizuya, T. Yamada, M.D. Hossain, M. Inoue, Molecular design of a proton-induced molecular switch based on rod-shaped Ru dinuclear complexes with bis-tridentate 2,6-bis(benzimidazol-2-yl) pyridine derivatives. Dalton Trans. 2069–2079 (2003). https://doi.org/10.1039/b300130j

  24. V.G. Vaidyanathan, B.U. Nair, Synthesis, characterization and electrochemical studies of mixed ligand complexes of ruthenium(II) with DNA. Dalton Trans. 2842–2848 (2005). https://doi.org/10.1039/b502917a

  25. D. Mishra, A. Barbieri, C. Sabatini, M.G.B. Drew, H.M. Figgle, W.S. Sheldrick, S.K. Chattopadhyay, Tuning of redox potential and visible absorption band of ruthenium(II) complexes of (benzimidazolyl) derivatives: synthesis, characterization, spectroscopic and redox properties, X-ray structures and DFT calculations. Inorg. Chim. Acta 360, 2231–2244 (2007)

    Article  Google Scholar 

  26. A. Singh, B. Chetia, S.M. Mobin, G. Das, P.K. Iyer, B. Mondal, Ruthenium monoterpyridine complexes with 2,6-bis(benzimidazol-2-yl)pyridine: synthesis, spectral properties and structure. Polyhedron 27, 1983–1988 (2008)

    Article  Google Scholar 

  27. J.J. Concepcion, J.W. Jurss, P.G. Hoertz, T.J. Meyer, Catalytic and surface-electrocatalytic water oxidation by redox mediator-catalyst assemblies. Angewandte Chemie 48, 9473–9476 (2009)

    Article  Google Scholar 

  28. C. Bhaumik, S. Das, D. Saha, S. Dutta, S. Baitalik, Synthesis, characterization, photophysical, and anion-binding studies of luminescent heteroleptic bis-tridentate ruthenium(II) complexes based on 2,6-bis(benzimidazole-2-yl) pyridine and 4′-substituted 2,2 ‘:6 ‘,2 ‘’ terpyridine derivatives. Inorg. Chem. 49, 5049–5062 (2010)

    Article  Google Scholar 

  29. S. Gunnaz, N. Ozdemir, S. Dayan, O. Dayan, B. Cetinkaya, Synthesis of ruthenium(II) complexes containing tridentate triamine (‘(NNN)over-cap ‘) and bidentate diamine ligands ((NN)over-cap ‘): as catalysts for transfer hydrogenation of ketones. Organometallics 30, 4165–4173 (2011)

  30. O. Dayan, S. Dayan, I. Kani, B. Cetinkaya, Ruthenium(II) complexes bearing pyridine-based tridentate and bidentate ligands: catalytic activity for transfer hydrogenation of aryl ketones. Appl. Organomet. Chem. 26, 663–670 (2012)

    Article  Google Scholar 

  31. O. Dayan, N. Ozdemir, Z. Serbetci, M. Dincer, B. Cetinkaya, O. Buyukgungor, Synthesis and catalytic activity of ruthenium(II) complexes containing pyridine-based tridentate triamines (‘NNN’) and pyridine carboxylate ligands (NO). Inorg. Chim. Acta 392, 246–253 (2012)

    Article  Google Scholar 

  32. Q.Y. Yu, B.X. Lei, J.M. Liu, Y. Shen, L.M. Xiao, R.L. Qiu, D.B. Kuang, C.Y. Su, Ruthenium dyes with heteroleptic tridentate 2,6-bis(benzimidazol-2-yl)-pyridine for dye-sensitized solar cells: enhancement in performance through structural modifications. Inorg. Chim. Acta 392, 388–395 (2012)

    Article  Google Scholar 

  33. K. Colladet, M. Nicolas, L. Goris, L. Lutsen, D. Vanderzande, Low-band gap polymers for photovoltaic applications. Thin Solid Films 451, 7–11 (2004)

    Article  Google Scholar 

  34. R. Dennington, T. Keith, J.G. Millam, Version 4.1. 2 (Semichem Inc, 2007)

  35. G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery Jr., T. Vreven, K. Kudin, J. Burant, J. Millam, Gaussian-03, Revision E. 01 (Gaussian Inc., Wallingford, CT, 2004)

    Google Scholar 

  36. A.D. Becke, Becke’s three parameter hybrid method using the LYP correlation functional. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  Google Scholar 

  37. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988)

    Article  Google Scholar 

  38. P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283 (1985)

    Article  Google Scholar 

  39. W.R. Wadt, P.J. Hay, Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284–298 (1985)

    Article  Google Scholar 

  40. P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985)

    Article  Google Scholar 

  41. G. A.McLean, Chandler, Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 72, 5639–5648 (1980)

    Article  Google Scholar 

  42. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980)

    Article  Google Scholar 

  43. N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008)

    Article  Google Scholar 

  44. A.W. Addison, P.J. Burke, Synthesis of some imidazole-derived and pyrazole-derived chelating-agents. J. Heterocyclic Chem. 18, 803–805 (1981)

    Article  Google Scholar 

  45. E. Inkaya, S. Gunnaz, N. Ozdemir, O. Dayan, M. Dincer, B. Cetinkaya, Synthesis, spectroscopic characterization, X-ray structure and DFT studies on 2,6-bis(1-benzyl-1H-benzo[d]imidazol-2-yl)pyridine. Spectrochimica Acta A 103, 255–263 (2013)

    Article  Google Scholar 

  46. B. Chen, Y.H. Li, W. Yang, W. Luo, H.B. Wu, Efficient sky-blue and blue-green light-emitting electrochemical cells based on cationic iridium complexes using 1,2,4-triazole-pyridine as the ancillary ligand with cyanogen group in alkyl chain. Org. Electron. 12, 766–773 (2011)

    Article  Google Scholar 

  47. Z.Z. Lu, J.D. Peng, A.K. Wu, C.H. Lin, C.G. Wu, K.C. Ho, Y.C. Lin, K.L. Lu, Heteroleptic ruthenium sensitizers with hydrophobic fused-thiophenes for use in efficient dye-sensitized solar cells., Eur. J. Inorg. Chem. 1214–1224 (2016). https://doi.org/10.1002/ejic.201501321

Download references

Acknowledgements

This research has been supported by The Scientific and Technical Research Council of Turkey (TUBİTAK) (Project No: 114Z439), TUBA and Çanakkale Onsekiz Mart University Scientific Research Projects Commission (Project Nos: BAP-2016-1024 and FDK-2018-1445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Dayan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dayan, O., Özdemir, N., Yakuphanoğlu, F. et al. Synthesis and photovoltaic properties of new Ru(II) complexes for dye-sensitized solar cells. J Mater Sci: Mater Electron 29, 11045–11058 (2018). https://doi.org/10.1007/s10854-018-9187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9187-9

Navigation