Abstract
In this paper we show that the diameter of a d-dimensional lattice polytope in \([0,k]^n\) is at most \({\lfloor }{\left( k-\frac{1}{2}\right) d}{\rfloor }\). This result implies that the diameter of a d-dimensional half-integral polytope is at most \({\lfloor }{\frac{3}{2} d}{\rfloor }\). We also show that for half-integral polytopes the latter bound is tight for any d.
Similar content being viewed by others
References
Abeledo, H.G., Rothblum, U.G.: Stable matchings and linear inequalities. Discrete Appl. Math. 54, 1–27 (1994)
Balinski, M.L.: Integer programming: methods, uses, computation. Manage. Sci. Ser. A 12, 253–313 (1965)
Balog, A., Bárány, I.: On the convex hull of the integer points in a disc. In: Proceedings of the Seventh Annual Symposium on Computational Geometry, SCG ’91, pp. 162–165. ACM, New York, NY, USA (1991)
Bonifas, N., Di Summa, M., Eisenbrand, F., Hähnle, N., Niemeier, M.: On sub-determinants and the diameter of polyhedra. Discrete Comput. Geom. 52(1), 102–115 (2014)
Brønsted, A.: An Introduction to Convex Polytopes. Springer, Berlin (1983)
Chena, X., Ding, G., Hu, X., Zang, W.: The maximum-weight stable matching problem: duality and efficiency. SIAM J. Discrete Math. 26(3), 1346–1360 (2012)
Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics. Algorithms and Combinatorics. Springer, Berlin (1997)
Gijswijt, D., Pap, G.: An algorithm for weighted fractional matroid matching. J. Comb. Theory Ser. B 103, 509–520 (2013)
Kleinschmidt, P., Onn, S.: On the diameter of convex polytopes. Discrete Math. 102, 75–77 (1992)
Naddef, D.J.: The Hirsch conjecture is true for \((0,1)\)-polytopes. Math. Program. 45, 109–110 (1989)
Naddef, D.J., Pulleyblank, W.R.: Hamiltonicity in \((0,1)\)-polyhedra. J. Comb. Theory Ser. B 37(1), 41–52 (1984)
Padberg, M.: The boolean quadric polytope: some characteristics, facets and relatives. Math. Program. 45, 139–172 (1989)
Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Springer, Berlin (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: Günter M. Ziegler
Rights and permissions
About this article
Cite this article
Del Pia, A., Michini, C. On the Diameter of Lattice Polytopes. Discrete Comput Geom 55, 681–687 (2016). https://doi.org/10.1007/s00454-016-9762-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-016-9762-x