Abstract
In this paper we propose a new method for evolutionary selection of parameters and structure of neuro-fuzzy system for nonlinear modelling. This method allows maintain the correct proportions between accuracy, complexity and interpretability of the system. Our algorithm has been tested using well-known benchmarks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aziz, D., Ali, M.A.M., Gan, K.B., Saiboon, I.: Initialization of Adaptive Neuro-Fuzzy Inference System Using Fuzzy Clustering in Predicting Primary Triage Category. In: 2012 4th International Conference on Intelligent and Advanced Systems, ICIAS, vol. 1, pp. 170–174 (2012)
Bartczuk, Ł., Rutkowska, D.: A new version of the fuzzy-ID3 algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1060–1070. Springer, Heidelberg (2006)
Bartczuk, Ł., Rutkowska, D.: Medical diagnosis with type-2 fuzzy decision trees. In: Kącki, E., Rudnicki, M., Stempczyńska, J. (eds.) Computers in Medical Activity. AISC, vol. 65, pp. 11–21. Springer, Heidelberg (2009)
Bartczuk, Ł., Rutkowska, D.: Type-2 fuzzy decision trees. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 197–206. Springer, Heidelberg (2008)
Bentley, P.: Evolutionary Design by Computers. Morgan Kaufmann (1999)
Box, G.E.P., Jenkins, G.M.: Time Series Analysis. In: Forecasting and Control, pp. 532–533 (1976)
Carlos, A.C.C., Gary, B.L., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation). Springer-Verlag, New York, Inc. (2007)
Casillas, J., Cordon, O., Herrera, F., Magdalena, L. (eds.): Interpretability Issues in Fuzzy Modeling. STUDFUZZ, vol. 128. Springer, Heidelberg (2003)
Cierniak, R.: A new approach to image reconstruction from projections problem using a recurrent neural network. Applied Mathematics and Computer Science 18(2), 147–157 (2008)
Cierniak, R.: A novel approach to image reconstruction problem from fan-beam projections using recurrent neural network. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 752–761. Springer, Heidelberg (2008)
Cierniak, R.: An image compression algorithm based on neural networks. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 706–711. Springer, Heidelberg (2004)
Cierniak, R.: New neural network algorithm for image reconstruction from fan-beam projections. Elsevier Science: Neurocomputing 72, 3238–3244 (2009)
Cordon, O., Herrera, F., Hoffman, F., Magdalena, L.: Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. Word Scientific (2001)
Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno Neuro-Fuzzy Structures for Nonlinear Approximation. WSEAS Transactions on Systems 4(9), 1450–1458 (2005)
Cpałka, K.: A New Method for Design and Reduction of Neuro-Fuzzy Classification Systems. IEEE Transactions on Neural Networks 20(4), 701–714 (2009)
Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. Nonlinear Analysis Series A: Theory, Methods and Applications 71(12), e1659–e1672 (2009)
Cpałka, K., Rutkowski, L.: A new method for designing and reduction of neuro-fuzzy systems. In: 2006 IEEE International Conference on Fuzzy Systems, pp. 1851–1857 (2006)
Delgado, M., Gómez-Skarmeta, A.F., Martin, F.: Fuzzy clustering-based rapid prototyping for fuzzy rule-based modelling. IEEE Transaction on Fuzzy Systems 5, 223–233 (1997)
Diago, L., Kitaoka, T., Hagiwara, I., Kambayashi, T.: Neuro-fuzzy quantification of personal perceptions of facial images based on a limited data set. IEEE Transactions on Neural Networks, 2422–2234 (2011)
Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 3rd edn. IEEE Press, Piscataway (2006)
Freitas, A.: Data Mining and Knowledge Discovery With Evolutionary Algorithms. Springer (2002)
Gabryel, M., Cpałka, K., Rutkowski, L.: Evolutionary strategies for learning of neuro-fuzzy systems. In: I Workshop on Genetic Fuzzy Systems, Genewa, pp. 119–123 (2005)
Gabryel, M., Rutkowski, L.: Evolutionary Learning of Mamdani-Type Neuro-fuzzy Systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 354–359. Springer, Heidelberg (2006)
Gabryel, M., Rutkowski, L.: Evolutionary methods for designing neuro-fuzzy modular systems combined by bagging algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 398–404. Springer, Heidelberg (2008)
Gan, L., Laurence, A., Maguib Raouf, N.G., Dadios Elmer, P., Avila Jose Maria, C.: Implementation of GA-KSOM and ANFIS in the classification of colonic histopathological images. In: TENCON 2012 - 2012 IEEE Region 10 Conference, pp. 1–5 (2012)
Hisao, I., Yusuke, N.: Discussions on Interpretability of Fuzzy Systems using Simple Examples. In: European Society for Fuzzy Logic and Technology - EUSFLAT, pp. 1649–1654
Horzyk, A., Tadeusiewicz, R.: Self-Optimizing Neural Networks. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 150–155. Springer, Heidelberg (2004)
Kaur, G.: Similarity measure of different types of fuzzy sets. School of Mathematics and Computer Applications, Tharpar University (2010)
Kim, E., Park, M., Kimand, S.: A transformed input-domain approach to fuzzy modelling. IEEE Transaction on Fuzzy Systems 6, 596–604 (1998)
Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers (2000)
Korytkowski, M., Gabryel, M., Rutkowski, L., Drozda, S.: Evolutionary methods to create interpretable modular system. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 405–413. Springer, Heidelberg (2008)
Korytkowski, M., Rutkowski, L., Scherer, R.: On combining backpropagation with boosting. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN, Vancouver, pp. 1274–1277 (2005)
Krishnaji, A., Rao, A.A.: Implementation of a hybrid Neuro Fuzzy Genetic System for improving protein secondary structure prediction. In: 2012 National Computing and Communication Systems (NCCCS), pp. 1–5 (2012)
Laskowski, Ł.: A novel hybrid-maximum neural network in stereo-matching process. Neural Computing & Applications (2012), doi:10.1007/s00521-012-1202-0
Laskowski, Ł.: Objects auto-selection from stereo-images realised by self-correcting neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS (LNAI), vol. 7267, pp. 119–125. Springer, Heidelberg (2012)
Laskowski, Ł.: A novel continuous dual mode neural network in stereo-matching process. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part III. LNCS (LNAI), vol. 6354, pp. 294–297. Springer, Heidelberg (2010)
Lin, J., Zheng, Y.B.: Vibration control of rotating plate by decomposed neuro-fuzzy control with genetic algorithm tuning. In: 2012 IEEE International Conference on Control Applications, CCA, pp. 575–580 (2012)
Li, X., Er, M.J., Lim, B.S., et al.: Fuzzy Regression Modeling for Tool Performance Prediction and Degradation Detection. International Journal of Neural Systems 20(5), 405–419 (2010)
Lin, Y., Cunningham III, G.A.: A New Approach To Fuzzy-Neural System Modeling. IEEE Transactions on Fuzzy Systems 3, 190–198 (1995)
Michalewicz, Z.: Genetic Algorithms + Data Structures=Evolution Programs. Springer (1999)
Nowicki, R., Pokropińska, A.: Information criterions applied to neuro-fuzzy architectures design. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 332–337. Springer, Heidelberg (2004)
Nowicki, R., Scherer, R., Rutkowski, L.: A method for learning of hierarchical fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, pp. 124–129. IOS Press (2002)
Pal, N.R., Chakraborty, D.: Simultaneous Feature Analysis and SI. In: Neuro-Fuzzy Pattern Recognition. World Scientific, Singapore (2000)
Przybył, A.: Doctoral dissertation: Adaptive observer of induction motor using artificial neural networks and evolutionary algorithms. Poznan University of Technology (2003) (in Polish)
Przybył, A., Smoląg, J., Kimla, P.: Real-time Ethernet based, distributed control system for the CNC machine. Electrical Review 2010-2 (2010) (in Polish)
Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 697–705. Springer, Heidelberg (2012)
Rutkowska, D., Nowicki, R., Rutkowski, L.: Neuro-fuzzy architectures with various implication operators. In: Sincak, P., et al. (eds.) The State of the Art in Computational Intelligence, pp. 214–219 (2000)
Rutkowski, L.: Computational Intelligence. Springer (2007)
Rutkowski, L.: Flexible Neuro-Fuzzy Systems. Kluwer Academic Publishers (2004)
Rutkowski, L., Cpałka, K.: Flexible neuro-fuzzy systems. IEEE Trans. Neural Networks 14(3), 554–574 (2003)
Rutkowski, L., Cpałka, K.: Flexible weighted neuro-fuzzy systems. In: Proceedings of the 9th Neural Information Processing, pp. 1857–1861 (2002)
Rutkowski, L., Przybył, A., Cpałka, K.: Novel Online Speed Profile Generation for Industrial Machine Tool Based on Flexible Neuro-Fuzzy Approximation. IEEE Transactions on Industrial Electronics 59(2), 1238–1247 (2012)
Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online Speed Profile Generation for Industrial Machine Tool Based on Neuro Fuzzy Approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 645–650. Springer, Heidelberg (2010)
Scherer, R., Rutkowski, L.: A fuzzy relational system with linguistic antecedent certainty factors. In: 6th International Conference on Neural Networks and Soft Computing, Zakopane, Poland. Advances In Soft Computing, pp. 563–569 (2003)
Scherer, R., Rutkowski, L.: Connectionist fuzzy relational systems. In: Halgamuge, S.K., Wang, L. (eds.) Computational Intelligence for Modelling and Prediction. SCI, vol. 2, pp. 35–47. Springer, Heidelberg (2005)
Scherer, R., Rutkowski, L.: Neuro-fuzzy relational classifiers. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 376–380. Springer, Heidelberg (2004)
Szaleniec, M., Goclon, J., Witko, M., Tadeusiewicz, R.: Application of artificial neural networks and DFT-based parameters for prediction of reaction kinetics of ethylbenzene dehydrogenase. Journal of Computer-Aided Molecular Design 20(3), 145–157 (2006)
Rey, M.I., Galende, M., Sainz, G.I., Fuente, M.J.: Checking orthogonal transformations and genetic algorithms for selection of fuzzy rules based on interpretability-accuracy concepts. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1271–1278 (2011)
Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms, pp. I-XIX, 1-442. Springer (2008)
Subramanian, K., Suresh, S., Venkatesh Babu, R.: Meta-Cognitive Neuro-Fuzzy Inference System for human emotion recognition. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2012)
Sugeno, M., Tanaka, K.: Successive identification on a fuzzy model and its applications to prediction of a complex system. Fuzzy Sets and Systems 42, 315–334 (1991)
Sugeno, M., Yasakuwa, T.: A Fuzzy-Logic-Based Approach to Qualitative Modeling. IEEE Transactions on Fuzzy Systems, 7–31 (1993)
Wang, N., Hu, C., Shi, W.: A Mamdani Fuzzy Modeling Method via Evolution-Objective Cluster Analysis. In: 2012 31st Chinese Control Conference (CCC), pp. 3470–3475 (2012)
Wang, L.X., Langari, R.: Building Sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques. IEEE Transaction on Fuzzy Systems 3, 454–458 (1995)
Yong, L., Singh, C.: Evaluation of the failure rates of transmission lines during hurricanes using a neuro-fuzzy system. In: 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), pp. 569–574 (2010)
Yoshinari, Y., Pedrycz, W., Hirota, K.: Construction of fuzzy models through clustering techniques. Fuzzy Sets and Systems 54, 157–165 (1993)
Zitzler, E., Laumanns, M., Bleuler, S.: A Tutorial on Evolutionary Multiobjective Optimization. In: Metaheuristics for Multiobjective Optimisation, pp. 3–38 (2003)
Zalasiński, M., Cpałka, K.: A new method of on-line signature verification using a flexible fuzzy one-class classifier. Selected Topics in Computer Science Applications, pp. 38–53. EXIT (2011)
Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS (LNAI), vol. 7268, pp. 362–367. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Łapa, K., Zalasiński, M., Cpałka, K. (2013). A New Method for Designing and Complexity Reduction of Neuro-fuzzy Systems for Nonlinear Modelling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38658-9_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-38658-9_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38657-2
Online ISBN: 978-3-642-38658-9
eBook Packages: Computer ScienceComputer Science (R0)