iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/10.1007/978-3-642-38016-7_9?fromPaywallRec=true
On Minimum-and Maximum-Weight Minimum Spanning Trees with Neighborhoods | SpringerLink
Skip to main content

On Minimum-and Maximum-Weight Minimum Spanning Trees with Neighborhoods

  • Conference paper
Approximation and Online Algorithms (WAOA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7846))

Included in the following conference series:

Abstract

We study optimization problems for the Euclidean minimum spanning tree (MST) on imprecise data. To model imprecision, we accept a set of disjoint disks in the plane as input. From each member of the set, one point must be selected, and the MST is computed over the set of selected points. We consider both minimizing and maximizing the weight of the MST over the input. The minimum weight version of the problem is known as the minimum spanning tree with neighborhoods (\(\textsc{MSTN}\)) problem, and the maximum weight version (\(\textsc{max-MSTN}\)) has not been studied previously to our knowledge. We provide deterministic and parameterized approximation algorithms for the \(\textsc{max-MSTN}\) problem, and a parameterized algorithm for the \(\textsc{MSTN}\) problem. Additionally, we present hardness of approximation proofs for both settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arkin, E., Hassin, R.: Approximation algorithms for the geometric covering salesman problem. Discrete Applied Mathematics 55(3), 197–218 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. de Berg, M., Gudmundsson, J., Katz, M., Levcopoulos, C., Overmars, M., van der Stappen, A.: TSP with neighborhoods of varying size. Journal of Algorithms 57(1), 22–36 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42(1), 67–90 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dorrigiv, R., Fraser, R., He, M., Kamali, S., Kawamura, A., López-Ortiz, A., Seco, D.: On minimum- and maximum-weight minimum spanning trees with neighborhoods. Tech. Rep. CS-2012-14, University of Waterloo (2012)

    Google Scholar 

  5. Dumitrescu, A., Mitchell, J.S.: Approximation algorithms for TSP with neighborhoods in the plane. Journal of Algorithms 48(1), 135–159 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Erlebach, T., Hoffmann, M., Krizanc, D., Mihalák, M., Raman, R.: Computing minimum spanning trees with uncertainty. In: Symposium on Theoretical Aspects of Computer Science, pp. 277–288 (2008)

    Google Scholar 

  7. Fiala, J., Kratochvíl, J., Proskurowski, A.: Systems of distant representatives. Discrete Applied Mathematics 145(2), 306–316 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem. IEEE Annals of the History of Computing 7(1), 43–57 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lichtenstein, D.: Planar formulae and their uses. SIAM J. on Computing 11(2), 329–344 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Löffler, M., van Kreveld, M.: Largest and smallest convex hulls for imprecise points. Algorithmica 56, 235–269 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar Borůvka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discrete Mathematics 233(13), 3–36 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Yang, Y.: On several geometric network design problems. Ph.D. thesis, State University of New York at Buffalo (2008)

    Google Scholar 

  13. Yang, Y., Lin, M., Xu, J., Xie, Y.: Minimum spanning tree with neighborhoods. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 306–316. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dorrigiv, R. et al. (2013). On Minimum-and Maximum-Weight Minimum Spanning Trees with Neighborhoods. In: Erlebach, T., Persiano, G. (eds) Approximation and Online Algorithms. WAOA 2012. Lecture Notes in Computer Science, vol 7846. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38016-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38016-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38015-0

  • Online ISBN: 978-3-642-38016-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics