iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/10.1007/978-3-319-63645-0_15?fromPaywallRec=true
Ontology Merging: A Practical Perspective | SpringerLink
Skip to main content

Abstract

Digitization of data has now come in a big way in almost every possible aspects of modern life. Agriculture as a domain is no exception. But digitization alone does not suffice, efficient retrievability of the information has to be ensured for providing web services including question-answering. However, building an ontology for a vast domain as a whole is not straightforward. We view creation of an ontology as an incremental process, where small-scale ontologies for different sub-domains are expected to be developed independently, to be merged into a single ontology for the domain. The paper aims at designing a framework for ontology merging. The method is described with agriculture as the primary domain with several subdomains such as crop, fertilizer, as subdomains among others. The supremacy of the scheme over Protégé, a well-known ontology management software is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://protege.stanford.edu.

  2. 2.

    http://oaei.ontologymatching.org/.

  3. 3.

    http://oaei.ontologymatching.org/2016/.

  4. 4.

    http://protegewiki.stanford.edu/wiki/PROMPT).

  5. 5.

    http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus.

  6. 6.

    http://agclass.nal.usda.gov/.

  7. 7.

    http://agropedia.iitk.ac.in/.

  8. 8.

    https://pypi.python.org/pypi/Owlready.

References

  1. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum. Comput. Stud. 43(5), 907–928 (1995)

    Article  Google Scholar 

  2. Lata, S., Sinha, B., Kumar, E., Chandra, S., Arora, R.: Semantic web query on e-governance data and designing ontology for agriculture domain. Int. J. Web Semant. Technol. 4(3), 65 (2013)

    Article  Google Scholar 

  3. Malik, N., Sharan, A., Hijam, D.: Ontology development for agriculture domain. In: 2nd International Conference Computing for Sustainable Global Development (INDIACom), pp. 738–742. IEEE (2015)

    Google Scholar 

  4. Choi, N., Song, I.-Y., Han, H.: A survey on ontology mapping. ACM Sigmod Rec. 35(3), 34–41 (2006)

    Article  Google Scholar 

  5. Predoiu, L., Feier, C., Scharffe, F., de Bruijn, J., Martín-Recuerda, F., Manov, D., Ehrig, M.: D4. 2.2 state-of-the-art survey on ontology merging and aligning V2. In: EU-IST Integrated Project IST-2003-506826 SEKT, p. 79 (2005)

    Google Scholar 

  6. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

    Article  Google Scholar 

  7. Noy, N.F., Musen, M.A.: SMART: automated support for ontology merging and alignment. In: Proceedings of the 12th Workshop on Knowledge Acquisition, Modelling, and Management (KAW 1999), Banf, Canada (1999)

    Google Scholar 

  8. Noy, N.F., Musen, M.A.: Anchor-PROMPT: using non-local context for semantic matching. In: Proceedings of the Workshop on Ontologies and Information Sharing at the International Joint Conference on Artificial Intelligence (IJCAI), pp. 63–70 (2001)

    Google Scholar 

  9. Noy, N.F., Musen, M.A.: The PROMPT suite: interactive tools for ontology merging and mapping. Int. J. Hum. Comput. Stud. 59(6), 983–1024 (2003)

    Article  Google Scholar 

  10. Chalupsky, H.: Ontomorph: a translation system for symbolic knowledge. In: KR, pp. 471–482 (2000)

    Google Scholar 

  11. Ichise, R., Takeda, H., Honiden, S.: Rule induction for concept hierarchy alignment. In: Workshop on Ontology Learning (2001)

    Google Scholar 

  12. Kalfoglou, Y., Hu, B.: CROSI Mapping System (CMS) - result of the 2005 ontology alignment contest. In: Ashpole, B., Ehrig, M., Euzenat, J., Stuckenschmidt, H. (eds.) Proceedings of the K-CAP 2005 Workshop on Integrating Ontologies, pp. 77–85 (2005)

    Google Scholar 

  13. Stumme, G., Maedche, A.: FCA-merge: bottom-up merging of ontologies. IJCAI 1, 225–230 (2001)

    Google Scholar 

  14. McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: The chimaera ontology environment. In: AAAI/IAAI 2000, pp. 1123–1124 (2000)

    Google Scholar 

  15. Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Gómez-Rodríguez, A.: Ontology matching: a literature review. Expert Syst. Appl. 42(2), 949–971 (2015)

    Article  Google Scholar 

  16. Sinha, B., Chandra, S.: Semantic web query on e-governance data for crop ontology model of Indian agriculture domain. In: Dutta, B., Madalli, D.P. (eds.) International Conference on Knowledge Modelling and Knowledge Management (ICKM), Bangalore (Bengaluru), pp. 56–66 (2013a)

    Google Scholar 

  17. Sinha, B., Chandra, S.: Semantic web ontology model for Indian agriculture domain. In: Dutta, B., Madalli, D.P. (eds.) International Conference on Knowledge Modelling and Knowledge Management (ICKM), Bangalore (Bengaluru), pp. 101–111 (2013b)

    Google Scholar 

  18. Chatterjee, N., Kaushik, N.: A practical approach for term and relationship extraction for automatic ontology creation from agricultural text. In: International Conference on Information Technology (ICIT), Bhubaneshwar, pp. 241–247 (2016)

    Google Scholar 

Download references

Acknowledgements

The work has been supported by Department of Electronics and Information Technology, Ministry of Communication and Information Technology, Government of India in the form of a sponsored project entitled “Development of Tools for Automatic Term Extraction and RDFization of Agriculture Terms with focus on Crops sub-domain”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niladri Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Chatterjee, N., Kaushik, N., Gupta, D., Bhatia, R. (2018). Ontology Merging: A Practical Perspective. In: Satapathy, S., Joshi, A. (eds) Information and Communication Technology for Intelligent Systems (ICTIS 2017) - Volume 2. ICTIS 2017. Smart Innovation, Systems and Technologies, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-63645-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63645-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63644-3

  • Online ISBN: 978-3-319-63645-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics