iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/10.1007/978-3-319-61033-7_4?fromPaywallRec=false
Integrating Relational Databases with the Semantic Web: A Reflection | SpringerLink
Skip to main content

Integrating Relational Databases with the Semantic Web: A Reflection

  • Chapter
  • First Online:
Reasoning Web. Semantic Interoperability on the Web (Reasoning Web 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10370))

Included in the following conference series:

Abstract

From the beginning it was understood that the success of the Semantic Web hinges on integrating the vast amount of data stored in Relational Databases. This manuscript reflects on the last 10 years of our research results to integrate Relational Databases with the Semantic Web. Since 2007, our research has led us to answer the following question: How and to what extent can Relational Databases be Integrated with the Semantic Web? The answer comes in two parts. We start by presenting how to get from Relational Databases to the Semantic Web via mappings, such as the W3C Direct Mapping and R2RML standards. Subsequently, we present how the Semantic Web can access Relational Databases. We finalize with how Relational Databases and Semantic Web technologies are being used practice for data integration and discuss open challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.w3.org/2007/03/RdfRDB/.

  2. 2.

    The term “entity” can be considered synonymous to resource.

  3. 3.

    The prefix “rdf:” represents http://www.w3.org/1999/02/22-rdf-syntax-ns#, hence the full IRI for rdf:type is http://www.w3.org/1999/02/22-rdf-syntax-ns#type. Additionally, the prefix “foaf:” represents http://xmlns.com/foaf/0.1/, hence the full IRI for foaf:Person is http://xmlns.com/foaf/0.1/Person.

  4. 4.

    Recall that \(\mathbf{V}\) is an infinite set of variables disjoint from \(\mathbf{I}\), \(\mathbf{B}\) and \(\mathbf{L}\) and that every element in \(\mathbf{V}\) starts with the symbol “?”. See Sect. 2.3.

  5. 5.

    For example, a space is replaced with %20 e.g., the percent encoding of “Hello World” is “Hello%20World”.

  6. 6.

    We refer the reader to [2] for the syntax and semantics of Datalog.

  7. 7.

    In practice an RDBMS will not allow a violation of an integrity constraint. However, it may be the case that an RDBMS is not being used and a user may have a dump of data (e.g. in CSV format) and may indicate that a particular column is the primary key when in reality the column violates the constraint.

  8. 8.

    http://www.w3.org/ns/r2rml.

  9. 9.

    Given that \(\alpha (s,\bar{x})\) is domain-independent, there exists a finite number of tuples \((c_1,\bar{d})\) such that \(I \,\models \, \alpha (c_1,\bar{d})\).

  10. 10.

    https://github.com/d2rq/d2rq/issues/94 As of April 2017, this issue is still open.

  11. 11.

    If \(t = (\mathtt{A}, \mathtt{type}, \mathtt{symProp})\), then we only need to replace \(\mathtt{A}\) by a.

  12. 12.

    In the evaluation, we also consider the case when indices are present.

  13. 13.

    http://docs.oracle.com/cd/B28359_01/server.111/b28313/qrbasic.htm.

  14. 14.

    http://www.heppnetz.de/projects/goodrelations/.

  15. 15.

    http://www.edmcouncil.org/financialbusiness.

  16. 16.

    https://semanticarts.com/gist/.

  17. 17.

    http://schema.org/.

References

  1. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web data management using vertical partitioning. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 411–422 (2007)

    Google Scholar 

  2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)

    MATH  Google Scholar 

  3. Ahmed, R., Lee, A., Das, D.: Join predicate push-down optimizations. US Patent 7,945,562, May 17 2011

    Google Scholar 

  4. Allemang, D., Hendler, J.A.: Semantic Web for the Working Ontologist - Effective Modeling in RDFS and OWL, 2nd edn. Morgan Kaufmann, San Francisco (2011)

    Google Scholar 

  5. Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88564-1_8

    Chapter  Google Scholar 

  6. Arenas, M., Barceló, P., Libkin, L., Murlak, F.: Foundations of Data Exchange. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  7. Arenas, M., Bertails, A., Prud’hommeaux, E., Sequeda, J.: Direct mapping of relational data to RDF. W3C Recomendation, 27 September 2012. http://www.w3.org/TR/rdb-direct-mapping/

  8. Azzaoui, K.: Scientific competency questions as the basis for semantically enriched open pharmacological space development. Drug Discov. Today 18, 843–852 (2013)

    Article  Google Scholar 

  9. Baader, F., Brandt, S., Lutz, C.: Pushing the el envelope. In: IJCAI (2005)

    Google Scholar 

  10. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  11. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semant. Web Inf. Syst. 5(2), 1–24 (2009)

    Article  Google Scholar 

  12. Blinkiewicz, M., Bąk, J.: SQuaRE: a visual approach for ontology-based data access. In: Li, Y.-F., Hu, W., Dong, J.S., Antoniou, G., Wang, Z., Sun, J., Liu, Y. (eds.) JIST 2016. LNCS, vol. 10055, pp. 47–55. Springer, Cham (2016). doi:10.1007/978-3-319-50112-3_4

    Chapter  Google Scholar 

  13. Brickley, D., Guha, R.: RDF vocabulary description language 1.0: RDF schema, W3C recommendation, February 2004

    Google Scholar 

  14. Broekstra, J., Kampman, A., Harmelen, F.: Sesame: a generic architecture for storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002). doi:10.1007/3-540-48005-6_7

    Chapter  Google Scholar 

  15. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. Artif. Intell. 195, 335–360 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reason. 39(3), 385–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite: effective first-order query processing in description logics. In: IJCAI, pp. 274–279 (2007)

    Google Scholar 

  18. Chakravarthy, U.S., Grant, J., Minker, J.: Logic-based approach to semantic query optimization. ACM Trans. Database Syst. 15(2), 162–207 (1990)

    Article  Google Scholar 

  19. Chebotko, A., Lu, S., Fotouhi, F.: Semantics preserving SPARQL-to-SQL translation. Data Knowl. Eng. 68(10), 973–1000 (2009)

    Article  Google Scholar 

  20. Cheng, Q., Gryz, J., Koo, F., Leung, T.Y.C., Liu, L., Qian, X., Schiefer, K.B.: Implementation of two semantic query optimization techniques in DB2 universal database. In: VLDB, pp. 687–698 (1999)

    Google Scholar 

  21. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An efficient SQL-based RDF querying scheme. In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 1216–1227 (2005)

    Google Scholar 

  22. Civili, C., Mora, J., Rosati, R., Ruzzi, M., Santarelli, V.: Semantic analysis of R2RML mappings for ontology-based data access. In: Ortiz, M., Schlobach, S. (eds.) RR 2016. LNCS, vol. 9898, pp. 25–38. Springer, Cham (2016). doi:10.1007/978-3-319-45276-0_3

    Chapter  Google Scholar 

  23. Corcho, Ó., Fernández-López, M., Gómez-Pérez, A.: Methodologies, tools and languages for building ontologies: where is their meeting point? Data Knowl. Eng. 46(1), 41–64 (2003)

    Article  Google Scholar 

  24. Cudré-Mauroux, P., et al.: NoSQL databases for RDF: an empirical evaluation. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 310–325. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41338-4_20

    Chapter  Google Scholar 

  25. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. W3C Recomendation, 27 September 2012. http://www.w3.org/TR/r2rml/

  26. Medeiros, L.F., Priyatna, F., Corcho, O.: MIRROR: automatic R2RML mapping generation from relational databases. In: Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 326–343. Springer, Cham (2015). doi:10.1007/978-3-319-19890-3_21

    Chapter  Google Scholar 

  27. DeWitt, D.J.: The Wisconsin benchmark: past, present, and future. In: The Benchmark Handbook, pp. 119–165 (1991)

    Google Scholar 

  28. Donini, F., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: An epistemic operator for description logics. Artif. Intell. 100(1–2), 225–274 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Elliott, B., Cheng, E., Thomas-Ogbuji, C., Ozsoyoglu, Z.M.: A complete translation from SPARQL into efficient SQL. In: Proceedings of the 2009 International Database Engineering & Applications Symposium, pp. 31–42 (2009)

    Google Scholar 

  31. Franke, C., Morin, S., Chebotko, A., Abraham, J., Brazier, P.: Distributed semantic web data management in HBase and MySQL cluster. In: Proceedings of the 2011 IEEE 4th International Conference on Cloud Computing, pp. 105–112 (2011)

    Google Scholar 

  32. Glimm, B., Hogan, A., Krotzsch, M., Polleres, A.: OWL-LD. http://semanticweb.org/OWLLD/

  33. Gray, A.J., Gray, N., Ounis, I.: Can RDB2RDF tools feasibily expose large science archives for data integration? In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 491–505. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02121-3_37

    Chapter  Google Scholar 

  34. Grimm, S., Motik, B.: Closed world reasoning in the semantic web through epistemic operators. In: OWLED (2005)

    Google Scholar 

  35. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logic. In: WWW, pp. 48–57 (2003)

    Google Scholar 

  36. Gupta, A., Mumick, I.S., Views, M.: Techniques, Implementations, and Applications. MIT Press, Cambridge (1999)

    Google Scholar 

  37. Halevy, A.Y.: Answering queries using views: a survey. VLDB J. 10(4), 270–294 (2001)

    Article  MATH  Google Scholar 

  38. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C Recommendation, 21 March 2013. http://www.w3.org/TR/sparql11-query/

  39. Hendler, J.: RDFS 3.0. In: W3C Workshop - RDF Next Steps (2010)

    Google Scholar 

  40. Hitzler, P., Gangemi, A., Janowicz, K., Krisnadhi, A., Presutti, V. (eds.): Ontology Engineering with Ontology Design Patterns - Foundations and Applications. Studies on the Semantic Web, vol. 25. IOS Press (2016)

    Google Scholar 

  41. Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL querying of large RDF graphs. PVLDB 4(11), 1123–1134 (2011)

    Google Scholar 

  42. Jiménez-Ruiz, E.: BootOX: practical mapping of RDBs to OWL 2. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 113–132. Springer, Cham (2015). doi:10.1007/978-3-319-25010-6_7

    Chapter  Google Scholar 

  43. Keet, C.M., Ławrynowicz, A.: Test-driven development of ontologies. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 642–657. Springer, Cham (2016). doi:10.1007/978-3-319-34129-3_39

    Chapter  Google Scholar 

  44. Ladwig, G., Harth, A.: CumulusRDF: linked data management on nested key-value stores. In: 7th International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS 2011) (2011)

    Google Scholar 

  45. Lembo, D., Mora, J., Rosati, R., Savo, D.F., Thorstensen, E.: Mapping analysis in ontology-based data access: algorithms and complexity. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 217–234. Springer, Cham (2015). doi:10.1007/978-3-319-25007-6_13

    Chapter  Google Scholar 

  46. Lenzerini, M.: Data integration: a theoretical perspective. In: PODS, pp. 233–246 (2002)

    Google Scholar 

  47. Lutz, C., Seylan, İ., Toman, D., Wolter, F.: The combined approach to OBDA: taming role hierarchies using filters. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 314–330. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41335-3_20

    Chapter  Google Scholar 

  48. MahmoudiNasab, H., Sakr, S.: An experimental evaluation of relational RDF storage and querying techniques. In: Yoshikawa, M., Meng, X., Yumoto, T., Ma, Q., Sun, L., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 6193, pp. 215–226. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14589-6_22

    Chapter  Google Scholar 

  49. Mehdi, A., Rudolph, S., Grimm, S.: Epistemic querying of OWL knowledge bases. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 397–409. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21034-1_27

    Chapter  Google Scholar 

  50. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., amd Carsten Lutz, A.F.: Owl 2 web ontology language profiles, 2nd edn., W3C recommendation, December 2012

    Google Scholar 

  51. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational databases. J. Web Semant. 7(2), 74–89 (2009)

    Article  Google Scholar 

  52. Muñoz, S., Pérez, J., Gutierrez, C.: Simple and efficient minimal RDFS. J. Web Semant. 7(3), 220–234 (2009)

    Article  Google Scholar 

  53. Neumann, T., Weikum, G.: The RDF-3x engine for scalable management of RDF data. VLDB J. 19(1), 91–113 (2010)

    Article  Google Scholar 

  54. Ortiz, M., Šimkus, M.: Reasoning and query answering in description logics. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 1–53. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33158-9_1

    Chapter  Google Scholar 

  55. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34(3), 16 (2009)

    Article  Google Scholar 

  56. Pinto, F.D., Lembo, D., Lenzerini, M., Mancini, R., Poggi, A., Rosati, R., Ruzzi, M., Savo, D.F.: Optimizing query rewriting in ontology-based data access. In: EDBT (2013)

    Google Scholar 

  57. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)

    MATH  Google Scholar 

  58. Priyatna, F., Corcho, Ó, Sequeda, J.: Formalisation and experiences of R2RML-based SPARQL to SQL query translation using Morph. In: 23rd International World Wide Web Conference, WWW 2014, Seoul, 7–11 April 2014, pp. 479–490 (2014)

    Google Scholar 

  59. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommendation 15 January 2008. http://www.w3.org/TR/rdf-sparql-query/

  60. Ren, Y., Parvizi, A., Mellish, C., Pan, J.Z., Deemter, K., Stevens, R.: Towards competency question-driven ontology authoring. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 752–767. Springer, Cham (2014). doi:10.1007/978-3-319-07443-6_50

    Chapter  Google Scholar 

  61. Rodríguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data access: Ontop of databases. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 558–573. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41335-3_35

    Chapter  Google Scholar 

  62. Sequeda, J.: On the semantics of R2RML and its relationship with the direct mapping. In: Proceedings of the ISWC 2013 Posters & Demonstrations Track, Sydney, 23 October 2013, pp. 193–196 (2013)

    Google Scholar 

  63. Sequeda, J., Priyatna, F., Villazón-Terrazas, B.: Relational database to RDF mapping patterns. In: Proceedings of the 3rd Workshop on Ontology Patterns, Boston, 12 November 2012

    Google Scholar 

  64. Sequeda, J.F.: Integrating relational databases with the semantic web. IOS Press (2016). https://repositories.lib.utexas.edu/bitstream/handle/2152/30537/SEQUEDA-DISSERTATION-2015.pdf

  65. Sequeda, J.F., Arenas, M., Miranker, D.P.: On directly mapping relational databases to RDF and OWL. In: WWW, pp. 649–658 (2012)

    Google Scholar 

  66. Sequeda, J.F., Arenas, M., Miranker, D.P.: OBDA: query rewriting or materialization? In practice, both!. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 535–551. Springer, Cham (2014). doi:10.1007/978-3-319-11964-9_34

    Google Scholar 

  67. Sequeda, J.F., Miranker, D.P.: Ultrawrap: SPARQL execution on relational data. J. Web Semant. 22, 19–39 (2013)

    Article  Google Scholar 

  68. Sequeda, J.F., Miranker, D.P.: Ultrawrap mapper: a semi-automatic relational database to RDF (RDB2RDF) mapping tool. In: Proceedings of the ISWC 2015 Posters & Demonstrations Track co-located with the 14th International Semantic Web Conference (ISWC-2015), Bethlehem, 11 October 2015

    Google Scholar 

  69. Sequeda, J.F., Tirmizi, S.H., Corcho, O., Miranker, D.P.: Survey of directly mapping SQL databases to the semantic web. Knowl. Eng. Review 26(4), 445–486 (2011)

    Article  Google Scholar 

  70. Shenoy, S.T., Ozsoyoglu, Z.M.: A system for semantic query optimization. In: SIGMOD, pp. 181–195 (1987)

    Google Scholar 

  71. Sicilia, Á., Nemirovski, G.: AutoMap4OBDA: automated generation of R2RML mappings for OBDA. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 577–592. Springer, Cham (2016). doi:10.1007/978-3-319-49004-5_37

    Chapter  Google Scholar 

  72. Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity constraints in OWL. In: AAAI (2010)

    Google Scholar 

  73. Tirmizi, S.H., Sequeda, J., Miranker, D.: Translating SQL applications to the semantic web. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 450–464. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85654-2_40

    Chapter  Google Scholar 

  74. Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. Knowledge Eng. Review 11(2), 93–136 (1996)

    Article  Google Scholar 

  75. Weaver, J., Hendler, J.A.: Parallel materialization of the finite RDFS closure for hundreds of millions of triples. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 682–697. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04930-9_43

    Chapter  Google Scholar 

  76. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data management. Proc. VLDB Endow. 1(1), 1008–1019 (2008)

    Article  Google Scholar 

  77. Wilkinson, K.: Jena property table implementation. Technical report HPL-2006-140, HP Laboratories (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Sequeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sequeda, J.F. (2017). Integrating Relational Databases with the Semantic Web: A Reflection. In: Ianni, G., et al. Reasoning Web. Semantic Interoperability on the Web. Reasoning Web 2017. Lecture Notes in Computer Science(), vol 10370. Springer, Cham. https://doi.org/10.1007/978-3-319-61033-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61033-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61032-0

  • Online ISBN: 978-3-319-61033-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics