iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://link.springer.com/10.1007/978-3-319-51814-5_19?fromPaywallRec=true
Frame-Independent and Parallel Method for 3D Audio Real-Time Rendering on Mobile Devices | SpringerLink
Skip to main content

Frame-Independent and Parallel Method for 3D Audio Real-Time Rendering on Mobile Devices

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10133))

Included in the following conference series:

Abstract

As 3D audio is a fundamental medium of virtual reality (VR), 3D audio real-time rendering technique is essential for the implementation of VR, especially on the mobile devices. While constrained by the limited computational power, the computation load is too high to implement 3D audio real-time rendering on the mobile devices. To solve this problem, we propose a frame-independent and parallel method of framing convolution, to parallelize process of 3D audio rendering using head-related transfer function (HRTF). In order to refrain from the dependency of overlap-add convolution over the adjacent frames, the data of convolution result is added on the final results of the two adjacent frames. We found our method could reduce the calculation time of 3D audio rendering significantly. The results were 0.74 times, 0.5 times and 0.36 times the play duration of si03.wav (length of 27 s), with Snapdragon 801, Kirin 935 and Helio X10 Turbo, respectively.

Y. Song—This work is supported by National High Technology Research and Development Program of China (863 Program) No. 2015AA016306; National Nature Science Foundation of China (No. 61231015, 61471271, 61662010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gerzon, M.A.: Ambisonics. Part two: studio techniques. Studio sound 17(8), 24–26 (1975)

    Google Scholar 

  2. Berkhout, A.J.: A holographic approach to acoustic control. J. Audio Eng. Soc. 36(12), 977–995 (1988). Audio Engineering Soc, New York

    Google Scholar 

  3. Berkhout, A.J., de Vries, D., Vogel, P.: Acoustic control by wave field synthesis. J. Acoust. Soc. Am. 93(5), 2764–2778 (1993)

    Article  Google Scholar 

  4. Pulkki, V., Karjalainen, M.: Multichannel audio rendering using amplitude panning [DSP applications]. IEEE Sig. Process. Mag. 25(3), 118–122 (2008). IEEE Press

    Article  Google Scholar 

  5. Jianjun, H.E., Tan, E.L., Gan, W.S.: Natural sound rendering for headphones: integration of signal processing techniques. IEEE Sig. Process. Mag. 32(2), 100–113 (2015). IEEE Press

    Article  Google Scholar 

  6. Lee, D.H., Kim, K.N., Lee, S.D., Chong, U.P.: A 3-D sound orchestra in the cyber space. In: The 4th Korea-Russia International Symposium, vol. 2, pp. 12–16. IEEE Press (2000)

    Google Scholar 

  7. Algazi, V.R., Duda, R.O., Thompson, D.M., Avendano, C.: The CIPIC HRTF database. In: 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics, pp. 99–102. IEEE Press (2001)

    Google Scholar 

  8. Qu, T., Xiao, Z., Gong, M., Huang, Y., Li, X., Wu, X.: Distance-dependent head-related transfer functions measured with high spatial resolution using a spark gap. IEEE Trans. Actions Audio Speech Lang. Process. 17(6), 1124–1132 (2009). IEEE Press

    Article  Google Scholar 

  9. Zotkin, D.N., Duraiswami, R., Davis, L.S.: Rendering localized spatial audio in a virtual auditory space. IEEE Trans. Multimedia 6(4), 553–564 (2004). IEEE Press

    Article  Google Scholar 

  10. Fu, Z.H., Xie, L., Jiang, D.M., Zhang, Y.N.: Fast 3D audio image rendering using equalized and relative HRTFs. In: 2013 International Conference on Orange Technologies (ICOT), pp. 47–50. IEEE Press (2013)

    Google Scholar 

  11. Zhang, C., Xie, B.: Platform for dynamic virtual auditory environment real-time rendering system. Chin. Sci. Bull. 58(3), 316–327 (2013)

    Article  Google Scholar 

  12. Iwaya, Y., Otani, M., Tsuchiya, T., Li, J.: Virtual auditory display on a smartphone for high-resolution acoustic space by remote rendering. In: 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 368–371. IEEE Press, September 2015

    Google Scholar 

  13. Xie, B., Zhong, X., Rao, D., Liang, Z.: Head-related transfer function database and its analyses. Sci. China Ser. G Phys. Mech. Astron. 50(3), 267–280 (2007). Springer

    Article  Google Scholar 

  14. Gardner, W.G., Martin, K.D.: HRTF measurements of a KEMAR. J. Acoust. Soc. Am. 97(6), 3907–3908 (1995). Acoustical Society of America

    Article  Google Scholar 

  15. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Pearson Higher Education, London (2010)

    MATH  Google Scholar 

  16. Carty, B.: Movements in binaural space: issues in HRTF interpolation and reverberation, with applications to computer music. Doctoral dissertation, National University of Ireland Maynooth (2010)

    Google Scholar 

  17. Snchez, I., Bescs, J.: Software modules for HRTF based dynamic spatialisation. Grupo de Tratamiento de imgenes, Universidad Politcnica de Madrid. Script and Documentation can be found on the CD-ROM respectively in Source C++ Bescos and Documentation Class LibrariesXBescos (2007)

    Google Scholar 

  18. Zhang, J., Xu, C., Xia, R., Li, J., Yan, Y.: Dependency of the finite-impulse-response-based head-related impulse response model on filter order (2014). https://depositonce.tu-berlin.de/bitstream/11303/181/1/23.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Song, Y., Wang, X., Yang, C., Gao, G., Chen, W., Tu, W. (2017). Frame-Independent and Parallel Method for 3D Audio Real-Time Rendering on Mobile Devices. In: Amsaleg, L., Guðmundsson, G., Gurrin, C., Jónsson, B., Satoh, S. (eds) MultiMedia Modeling. MMM 2017. Lecture Notes in Computer Science(), vol 10133. Springer, Cham. https://doi.org/10.1007/978-3-319-51814-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51814-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51813-8

  • Online ISBN: 978-3-319-51814-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics